OFFSET
0,5
COMMENTS
FORMULA
Binomial transform of A129686 signed with (1, 1, 1, ...) in the main diagonal and (-1, -1, -1, ...) in the subsubdiagonal.
T(n,m) = T(n-1,m-1) + T(n-1,m). - Yuchun Ji, Dec 17 2018
T(2*k,k-1) = 0 for k > 0. - Yuchun Ji, Dec 20 2018
Comparing this triangle with the Catalan triangle A009766 one can see many similarities. For example, T(k+j,k) = A009766(k+1,j) for j < k+2. - Yuchun Ji, Dec 23 2018 [Edited by N. J. A. Sloane, Feb 11 2019]
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
0, 2, 1;
-2, 2, 3, 1;
-5, 0, 5, 4, 1;
-9, -5, 5, 9, 5, 1;
-14, -14, 0, 14, 14, 6, 1;
-20, -28, -14, 14, 28, 20, 7, 1;
-27, -48, -42, 0, 42, 48, 27, 8, 1;
-35, -75, -90, -42, 42, 90, 75, 35, 9, 1;
...
PROG
(PARI) tabl(nn) = {t007318 = matrix(nn, nn, n, k, binomial(n-1, k-1)); t129686 = matrix(nn, nn, n, k, (k<=n)*((-1)^((n-k)\2)*((k==n) || (-1)*(k==(n-2))))); t131085 = t007318*t129686; for (n = 1, nn, for (k = 1, n, print1(t131085[n, k], ", "); ); ); } \\ Michel Marcus, Feb 12 2014
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Gary W. Adamson, Jun 14 2007
EXTENSIONS
Missing comma corrected by Naruto Canada, Aug 26 2007
More terms from Michel Marcus, Feb 12 2014
Offset changed by N. J. A. Sloane, Feb 11 2019
STATUS
approved