This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129763 Sum_{k=1..n} binomial(n+k-1, n)^2 / n. 1
 1, 5, 39, 369, 3898, 44239, 528083, 6544745, 83496720, 1090091650, 14501708246, 195954553755, 2682953977174, 37150480629539, 519455719162283, 7325383709872345, 104080732316126716, 1488685017986884528, 21420051312840487968 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Note that sum_{k=1..n} binomial(n+k-1, n) / n = Catalan(n) = A000108(n). p divides a((p-1)/2) for prime p = {5, 13, 17, 29, 37, 41, 53, ...) = A002144 Pythagorean primes: primes of form 4n + 1. [Alexander Adamchuk, Dec 27 2013] LINKS FORMULA G.f.: has an anti-derivative of a hypergeometric function, see Maple program.  - Mark van Hoeij, May 05 2013 Recurrence: 2*n^2*(2*n + 1)*(21*n^2 - 62*n + 46)*a(n) = (1365*n^5 - 6067*n^4 + 9948*n^3 - 7478*n^2 + 2640*n - 360)*a(n-1) - 4*(n-2)*(2*n - 3)^2*(21*n^2 - 20*n + 5)*a(n-2). - Vaclav Kotesovec, Mar 02 2014 a(n) ~ 16^n / (3*Pi*n^2). - Vaclav Kotesovec, Mar 02 2014 MAPLE ogf := (4-x)^(1/2)*x^(-3/2)*Int((x+5/4)*hypergeom([1/2, 1/2], [1], 16*x)/((4-x)^(3/2)*x^(1/2)), x) - 5/(8*x); series(eval(ogf, Int = proc(a, x) int(series(a, x=0, 30), x) end), x=0, 30);  - Mark van Hoeij, May 05 2013 MATHEMATICA Table[ Sum[ Binomial[ n+k-1, n ]^2, {k, 1, n} ] / n, {n, 1, 30} ] CROSSREFS Cf. A000108 (Catalan numbers), A002144 (Pythagorean primes). Sequence in context: A115187 A266456 A247772 * A277424 A182954 A215506 Adjacent sequences:  A129760 A129761 A129762 * A129764 A129765 A129766 KEYWORD nonn AUTHOR Alexander Adamchuk, May 15 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.