login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129762 Sum of all elements of n X n X n cubic array M[i,j,k] = Fibonacci[i+j+k-2]. 0
1, 13, 104, 615, 3149, 14912, 67537, 297945, 1293832, 5564911, 23795465, 101383680, 431003105, 1829784725, 7761645928, 32906509335, 139466630773, 590979780544, 2503927125041, 10608105770625, 44940061502216 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

p^3 divides a(p-1) for prime p = {11,19,29,31,41,59,61,71,79,89,...} = A045468 Primes congruent to {1, 4} mod 5; also primes p that divide Fibonacci(p-1). a(n) is prime for n = {2,7,19,...}.

a(n) is prime for n = {2, 7, 19, 47, 175, 179, ...}. The formula a(n) = F(3n+4) - 3F(2n+4) + 3F(n+4) - 3 and its generalization for k-dimensional hypercubes with elements M(i,j,...) = F(i+j+...-k+1) was stated and proved by the user 1istik_figi in private communication at LiveJournal on Oct 10 2007. The k-dimensional formula is a(n) = Sum[(-1)^i*Binomial[k,i]*Fibonacci[(k-i)*n+k+1],{i,0,k}]. Conjecture: if prime p divides F(p-1) then p^k divides a(n) in k-dimensional case.

LINKS

Table of n, a(n) for n=1..21.

Index entries for linear recurrences with constant coefficients, signature (9,-26,24,6,-14,1,1).

FORMULA

a(n) = Sum[ Sum[ Sum[ Fibonacci[i+j+k-2], {i,1,n} ], {j,1,n} ], {k,1,n} ].

a(n) = Fibonacci[3n+4] - 3*Fibonacci[2n+4] + 3*Fibonacci[n+4] - 3.

a(n) = 9*a(n-1) - 26*a(n-2) + 24*a(n-3) + 6*a(n-4) - 14*a(n-5) + a(n-6) + a(n-7). - Joerg Arndt, Apr 21 2011

G.f.: -x*(x^5 - 7*x^3 + 13*x^2 + 4*x + 1)/((x-1)*(x^2 - 3*x + 1)*(x^2 + x - 1)*(x^2 + 4*x - 1)). - Colin Barker, Aug 10 2012

MATHEMATICA

Table[ Sum[ Sum[ Sum[ Fibonacci[i+j+k-2], {i, 1, n} ], {j, 1, n} ], {k, 1, n} ], {n, 1, 30} ]

Table[ Fibonacci[3n+4] - 3*Fibonacci[2n+4] + 3*Fibonacci[n+4] - 3, {n, 1, 50} ]

PROG

(MAGMA) [Fibonacci(3*n+4) - 3*Fibonacci(2*n+4) + 3*Fibonacci(n+4) - 3: n in [1..30]]; // Vincenzo Librandi, Apr 21 2011

CROSSREFS

Cf. A120297 = Sum of all matrix elements of n X n matrix M[i, j] = Fibonacci[i+j-1]. Cf. A000045, A045468, A001924, A062381.

Sequence in context: A080440 A159352 A289859 * A283121 A278555 A282921

Adjacent sequences:  A129759 A129760 A129761 * A129763 A129764 A129765

KEYWORD

nonn,easy

AUTHOR

Alexander Adamchuk, May 15 2007, Oct 11 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 14:22 EST 2018. Contains 299333 sequences. (Running on oeis4.)