This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129761 First differences of Fibbinary numbers (A003714). 5
 1, 1, 2, 1, 3, 1, 1, 6, 1, 1, 2, 1, 11, 1, 1, 2, 1, 3, 1, 1, 22, 1, 1, 2, 1, 3, 1, 1, 6, 1, 1, 2, 1, 43, 1, 1, 2, 1, 3, 1, 1, 6, 1, 1, 2, 1, 11, 1, 1, 2, 1, 3, 1, 1, 86, 1, 1, 2, 1, 3, 1, 1, 6, 1, 1, 2, 1, 11, 1, 1, 2, 1, 3, 1, 1, 22, 1, 1, 2, 1, 3, 1, 1, 6, 1, 1, 2, 1, 171, 1, 1, 2, 1, 3, 1, 1, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Theorem: If the Zeckendorf representation of M ends with exactly k >= 0 zeros, ...10^k, then a(n) = ceiling(2^k/3). Also, if the Zeckendorf representation of n (A014417(n)) is even then a(n) is given by A319952, otherwise a(n) = 1. - Jeffrey Shallit and N. J. A. Sloane, Oct 03 2018 LINKS N. J. A. Sloane, Table of n, a(n) for n = 0..10000 (First 2500 terms from Vincenzo Librandi) MAPLE with(combinat): F:=fibonacci: A072649:= proc(n) local j; global F; for j from ilog[(1+sqrt(5))/2](n)        while F(j+1)<=n do od; (j-1); end: A003714 := proc(n) global F; option remember; if(n < 3) then RETURN(n); else RETURN((2^(A072649(n)-1))+A003714(n-F(1+A072649(n)))); fi; end: A129761 := n -> A003714(n+1)-A003714(n): [seq(A129761(n), n=0..120)]; # N. J. A. Sloane, Oct 03 2018, borrowing programs from other sequences MATHEMATICA Differences[Select[Range[600], !MemberQ[Partition[IntegerDigits[#, 2], 2, 1], {1, 1}] &]] (* Harvey P. Dale, Jul 17 2011 *) CROSSREFS Cf. A000045, A000071, A003714, A005578, A319432. Sequence in context: A178534 A110619 A191861 * A319299 A207031 A156248 Adjacent sequences:  A129758 A129759 A129760 * A129762 A129763 A129764 KEYWORD nonn AUTHOR Ralf Stephan, May 14 2007 EXTENSIONS a(0)=1 added by N. J. A. Sloane, Oct 02 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 06:18 EDT 2019. Contains 328292 sequences. (Running on oeis4.)