login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182954 G.f. satisfies: A(x) = 1 + x*A(x) * A( x*A(x) )^4. 3
1, 1, 5, 39, 381, 4284, 53163, 710810, 10085621, 150326044, 2336828792, 37687170215, 628069684439, 10782885724300, 190248852445782, 3442896376032300, 63804661588968521, 1209314277690837796 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..17.

FORMULA

G.f. A(x) satisfies:

* A(x) = exp( Sum_{m>=0} {d^m/dx^m x^m*A(x)^(4m+4)} * x^(m+1)/(m+1)! );

* A(x) = exp( Sum_{m>=1} [Sum_{k>=0} C(m+k-1,k)*{[y^k] A(y)^(4m)}*x^k]*x^m/m);

which are equivalent.

Recurrence:

Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then

a(n,m) = Sum_{k=0..n} m*C(n+m,k)/(n+m) * a(n-k,4k).

EXAMPLE

G.f.: A(x) = 1 + x + 5*x^2 + 39*x^3 + 381*x^4 + 4284*x^5 +...

Related expansions:

A(x*A(x)) = 1 + x + 6*x^2 + 54*x^3 + 592*x^4 + 7331*x^5 + 98870*x^6 +...

A(x*A(x))^4 = 1 + 4*x + 30*x^2 + 292*x^3 + 3305*x^4 + 41420*x^5 +...

The g.f. satisfies:

log(A(x)) = A(x)^4*x + {d/dx x*A(x)^8}*x^2/2! + {d^2/dx^2 x^2*A(x)^12}*x^3/3! + {d^3/dx^3 x^3*A(x)^16}*x^4/4! +...

PROG

(PARI) {a(n)=local(A=1+sum(i=1, n-1, a(i)*x^i+x*O(x^n)));

for(i=1, n, A=exp(sum(m=1, n, sum(k=0, n-m, binomial(m+k-1, k)*polcoeff(A^(4*m), k)*x^k)*x^m/m)+x*O(x^n))); polcoeff(A, n)}

(PARI) {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(n+m, k)/(n+m)*a(n-k, 4*k))))}

CROSSREFS

Cf. A030266, A121687, A182953, A182955.

Sequence in context: A247772 A129763 A277424 * A215506 A316654 A070767

Adjacent sequences:  A182951 A182952 A182953 * A182955 A182956 A182957

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 15:22 EDT 2018. Contains 316388 sequences. (Running on oeis4.)