login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129151
The n-th arithmetic derivative of 3^4.
9
81, 108, 216, 540, 1188, 2484, 5076, 10260, 23112, 57996, 135648, 475632, 1586736, 4760640, 20409408, 89259840, 374899968, 1880140032, 9400707072, 64402394112, 395614900224, 2769304412160, 22930714939392, 162970999640064, 1188480788434944, 8320496444780544
OFFSET
0,1
COMMENTS
In general, the trajectory of p^(p+1) under A003415 is equal to p^p times the trajectory of p under A129283: n -> n + n'. Here we have the case p = 3 (see A129285 for a(n)/3^3), see A129150 and A129152 for p = 2 and 5. - M. F. Hasler, Nov 28 2019
FORMULA
a(n+1) = A003415(a(n)), a(0) = 3^4 = 81.
a(n) = A129285(n)*3^3; A129251(a(n)) > 0. - Reinhard Zumkeller, Apr 07 2007
MATHEMATICA
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; s = 3^4; Join[{s}, Table[s = dn[s], {25}]] (* T. D. Noe, Mar 07 2013 *)
PROG
(Haskell)
a129151 n = a129151_list !! n
a129151_list = iterate a003415 81 -- Reinhard Zumkeller, Apr 29 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 01 2007
STATUS
approved