login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099309 Numbers n whose k-th arithmetic derivative is nonzero for all k. Complement of A099308. 13
4, 8, 12, 15, 16, 20, 24, 26, 27, 28, 32, 35, 36, 39, 40, 44, 45, 48, 50, 51, 52, 54, 55, 56, 60, 63, 64, 68, 69, 72, 74, 75, 76, 80, 81, 84, 86, 87, 88, 90, 91, 92, 95, 96, 99, 100, 102, 104, 106, 108, 110, 111, 112, 115, 116, 117, 119, 120, 122, 123, 124, 125, 128, 132 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers of the form n = m*p^p (where p is prime), i.e., multiples of some term in A051674, have n' = (m + m')*p^p, which is again of the same form, but strictly larger iff m > 1. Therefore successive derivatives grow to infinity in this case, and they are constant when m = 1. There are other terms in this sequence, but I conjecture that they all eventually lead to a term of this form, e.g., 26 -> 15 -> 8 etc. - M. F. Hasler, Apr 09 2015

REFERENCES

See A003415.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

PROG

(PARI) is(n)=until(4>n=factorback(n~)*sum(i=1, #n, n[2, i]/n[1, i]), for(i=1, #n=factor(n)~, n[1, i]>n[2, i]||return(1))) \\ M. F. Hasler, Apr 09 2015

CROSSREFS

Cf. A003415 (arithmetic derivative of n), A099307 (least k such that the k-th arithmetic derivative of n is zero), A099308 (numbers whose k-th arithmetic derivative is zero for some k).

Sequence in context: A248159 A190679 A009023 * A327929 A327864 A235865

Adjacent sequences:  A099306 A099307 A099308 * A099310 A099311 A099312

KEYWORD

nonn

AUTHOR

T. D. Noe, Oct 12 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 09:33 EST 2019. Contains 329843 sequences. (Running on oeis4.)