login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051674 a(n) = prime(n)^prime(n). 92
4, 27, 3125, 823543, 285311670611, 302875106592253, 827240261886336764177, 1978419655660313589123979, 20880467999847912034355032910567, 2567686153161211134561828214731016126483469 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

n such that bigomega(n)^(bigomega(n)) = n, where bigomega = A001222. - Lekraj Beedassy, Aug 21 2004

Positive n such that n' = n, where n' is the arithmetic derivative of n. - T. D. Noe, Oct 12 2004

David Beckwith proposes (in the AMM reference): "Let n be a positive integer and let p be a prime number. Prove that (p^p) | n! implies that (p^(p + 1)) | n!". - Jonathan Vos Post, Feb 20 2006

Subsequence of A100716; A003415(m*a(n)) = A129283(m)*a(n), especially A003415(a(n)) = a(n). - Reinhard Zumkeller, Apr 07 2007

A168036(a(n)) = 0. - Reinhard Zumkeller, May 22 2015

REFERENCES

J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 740 pp. 95; 312, Ellipses Paris 2004.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..40

David Beckwith, Problem 11158, American Mathematical Monthly, Vol. 112, No. 5 (May 2005), p. 468.

Jurij Kovic, The Arithmetic Derivative and Antiderivative, Journal of Integer Sequences, Vol. 15 (2012), #12.3.8.

FORMULA

a(n) = A000312(A000040(n)). - Altug Alkan, Sep 01 2016

EXAMPLE

a(1) = 2^2 = 4.

a(2) = 3^3 = 27.

a(3) = 5^5 = 3125.

MAPLE

A051674:=n->ithprime(n)^ithprime(n): seq(A051674(n), n=1..10); # Wesley Ivan Hurt, Jun 25 2016

MATHEMATICA

Array[Prime[ # ]^Prime[ # ] &, 12] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)

PROG

(Haskell)

a051674_list = map (\p -> p ^ p) a000040_list

-- Reinhard Zumkeller, Jan 21 2012

(PARI) a(n)=n=prime(n); n^n \\ Charles R Greathouse IV, Mar 20 2013

(MAGMA) [p^p: p in PrimesUpTo(30)]; // Vincenzo Librandi, Mar 27 2014

(Python) from gmpy2 import mpz

[mpz(prime(n))**mpz(prime(n)) for n in range(1, 100)] # Chai Wah Wu, Jul 28 2014

CROSSREFS

Cf. A000040, A000312, A003415 (arithmetic derivative of n), A129150, A129151, A129152, A048102, A072873 (multiplicative closure), A104126.

Subsequence of A100717; A203908(a(n)) = 0.

Subsequence of A097764.

Cf. A168036, A094289 (decimal expansion of Sum(1/p^p)).

Sequence in context: A066352 A249105 A249110 * A132641 A008973 A132646

Adjacent sequences:  A051671 A051672 A051673 * A051675 A051676 A051677

KEYWORD

nonn,easy

AUTHOR

Asher Auel (asher.auel(AT)reed.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 19:05 EST 2016. Contains 278948 sequences.