

A129150


The nth arithmetic derivative of 2^3.


11



8, 12, 16, 32, 80, 176, 368, 752, 1520, 3424, 8592, 20096, 70464, 235072, 705280, 3023616, 13223680, 55540736, 278539264, 1392697344, 9541095424, 58609614848, 410267320320, 3397142953984, 24143851798528, 176071227916288, 1232666139967488, 9523075842834432
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Conjecture: a strictly increasing sequence.  J. Lowell, Sep 10 2008
The sequence is strictly increasing because (4*n)' = 4*n + 4*n'.  David Radcliffe, Aug 19 2014
8 is the smallest integer that has a nontrivial trajectory (not going to 0 nor reduced to a fixed point as 4) under A003415, but 15 = A090636(1) has 8 as second term in its trajectory. 20 is the next larger such integer with a distinct trajectory, but has two larger predecessors, cf. A090635.  M. F. Hasler, Nov 27 2019
In general, the trajectory of p^(p+1) under A003415 has a common factor p^p, and divided by p^p it gives the trajectory of p under A129283: n > n + n'. Here we have the case p = 2 (see A129284 for a(n)/2^2), cf. A129151 and A129152 for p = 3 and 5.  M. F. Hasler, Nov 28 2019


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 0..100


FORMULA

a(n+1) = A003415(a(n)), a(0) = 2^3 = 8.
a(n) = A090636(n+2).
A129251(a(n)) > 0.  Reinhard Zumkeller, Apr 07 2007
a(n) = 4*A129284(n).  M. F. Hasler, Nov 27 2019


MATHEMATICA

dn[0] = 0; dn[1] = 0; dn[n_?Negative] := dn[n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; s = 2^3; Join[{s}, Table[s = dn[s], {28}]] (* T. D. Noe, Mar 07 2013 *)


PROG

(Haskell)
a129150 n = a129150_list !! n
a129150_list = iterate a003415 8  Reinhard Zumkeller, Apr 29 2012
(PARI) A129150(n, a=8)={if(n<0, vector(n, n, if(n>1, a=A003415(a), a)), for(n=1, n, a=A003415(a)); a)} \\ For n<0 return the vector a[0..n1].  M. F. Hasler, Nov 27 2019


CROSSREFS

Cf. A129151, A129152, A068327, A099309, A051674, A100716, A129284.
Row n = 8 of A258651.
Sequence in context: A273798 A163283 A036705 * A331863 A175975 A030752
Adjacent sequences: A129147 A129148 A129149 * A129151 A129152 A129153


KEYWORD

nonn


AUTHOR

Reinhard Zumkeller, Apr 01 2007


EXTENSIONS

a(21)a(27) from Paolo P. Lava, Apr 16 2012


STATUS

approved



