login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126930 Inverse binomial transform of A005043. 14
1, -1, 2, -3, 6, -10, 20, -35, 70, -126, 252, -462, 924, -1716, 3432, -6435, 12870, -24310, 48620, -92378, 184756, -352716, 705432, -1352078, 2704156, -5200300, 10400600, -20058300, 40116600, -77558760, 155117520, -300540195, 601080390, -1166803110 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Successive binomial transforms are A005043, A000108, A007317, A064613, A104455. Hankel transform is A000012.

Moment sequence of the trace of the square of a random matrix in USp(2)=SU(2). If X=tr(A^2) is a random variable (a distributed with Haar measure) then a(n) = E[X^n]. - Andrew V. Sutherland, Feb 29 2008

From Tom Copeland, Nov 08 2014: (Start)

This array is one of a family of Catalan arrays related by compositions of the special fractional linear (Mobius) transformation P(x,t) = x/(1-t*x); its inverse Pinv(x,t) = P(x,-t); an o.g.f. of the Catalan numbers A000108, C(x) = [1-sqrt(1-4x)]/2; and its inverse Cinv(x) = x*(1-x). The Motzkin sums, or Riordan numbers, A005043 are generated by Mot(x)=C[P(x,1)]. One could, of course, choose the Riordan numbers as the parent sequence.

O.g.f.: G(x) = C[P[P(x,1),1]1] = C[P(x,2)] = [1-sqrt(1-4*x/(1+2x)]/2 = x - x^2 + 2 x^3 - ... = Mot[P(x,1)].

Ginv(x) =  Pinv[Cinv(x),2] = P[Cinv(x),-2] = x(1-x)/[1-2x(1-x)] = (x-x^2)/[1-2(x-x^2)] = x*A146559(x).

Cf. A091867 and A210736 for an unsigned version with a leading 1. (End)

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv preprint arXiv:1110.6638 [math.NT], 2011.

Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.

FORMULA

a(n) = (-1)^n*C(n, floor(n/2)) = (-1)^n*A001405(n).

a(2*n) = A000984(n), a(2*n+1) = -A001700(n).

a(n) = (1/Pi)*Integral_{t=0..Pi}(2cos(2t))^n*2sin^2(t) dt. - Andrew V. Sutherland, Feb 29 2008, Mar 09 2008

a(n) = (-2)^n + Sum_{k=0..n-1} a(k)*a(n-1-k), a(0)=1. - Philippe Deléham, Dec 12 2009

G.f.: (1+2*x-sqrt(1-4*x^2))/(2*x*(1+2*x)). - Philippe Deléham, Mar 01 2013

O.g.f.: (1 + x*c(x^2))/(1 + 2*x), with the o.g.f. c(x) for the Catalan numbers A000108. From the o.g.f. of the Riordan type Catalan triangle A053121. This is the rewritten g.f. given in the previous formula. This is G(-x) with the o.g.f. G(x) of A001405. - Wolfdieter Lang, Sep 22 2013

(n+1)*a(n) +2*a(n-1) +4*(-n+1)*a(n-2)=0. - R. J. Mathar, Dec 04 2013

Recurrence (an alternative): (n+1)*a(n) = 8*(n-2)*a(n-3) + 4*(n-2)*a(n-2) + 2*(-n-1)*a(n-1), n>=3. - Fung Lam, Mar 22 2014

Asymptotics: a(n) ~ (-1)^n*2^(n+1/2)/sqrt(n*Pi). - Fung Lam, Mar 22 2014

E.g.f.: BesselI(0,2*x) - BesselI(1,2*x). - Peter Luschny, Dec 17 2014

a(n) = 2^n*hypergeom([3/2,-n], [2], 2). - Vladimir Reshetnikov, Nov 02 2015

MAPLE

egf := BesselI(0, 2*x) - BesselI(1, 2*x):

seq(n!*coeff(series(egf, x, 34), x, n), n=0..33); # Peter Luschny, Dec 17 2014

MATHEMATICA

CoefficientList[Series[(1 + 2 x - Sqrt[1 - 4 x^2])/(2 x (1 + 2 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 23 2013 *)

Table[2^n Hypergeometric2F1[3/2, -n, 2, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 02 2015 *)

PROG

(PARI) x='x+O('x^50); Vec((1+2*x-sqrt(1-4*x^2))/(2*x*(1+2*x))) \\ Altug Alkan, Nov 03 2015

CROSSREFS

Cf. A126120, A126869.

Cf. A000108, A005043, A146559, A091867, A210736.

Sequence in context: A037031 A056202 A001405 * A210736 A036557 A173125

Adjacent sequences:  A126927 A126928 A126929 * A126931 A126932 A126933

KEYWORD

sign

AUTHOR

Philippe Deléham, Mar 17 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 05:17 EDT 2018. Contains 316304 sequences. (Running on oeis4.)