This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036557 Number of multiples of 3 in 0..2^n-1 with an even sum of base 2 bits. 3
 1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 463, 926, 1730, 3460, 6555, 13110, 25126, 50252, 97223, 194446, 379050, 758100, 1486675, 2973350, 5858126, 11716252, 23166783, 46333566, 91869970, 183739940, 365088395, 730176790 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,4,-8,-3,6). FORMULA From Ralf Stephan, Aug 29 2004: (Start) a(n) = (1/12)*{3^[(n+1)/2] + 3^[(n+2)/2] + 2^(n+1) + (-1)^n + 3}, n>0. G.f.: (1-x-4*x^2+3*x^3+3*x^4-x^5)/((1-x^2)*(1-2*x)*(1-3*x^2)). (End) MATHEMATICA Sum[ Sum[ Binomial[ Floor[ n/2 ], i ], {i, r, n, 6} ]*Sum[ Binomial[ Ceiling[ n/2 ], i ], {i, r, n, 6} ], {r, 0, 5} ] Join[{1}, LinearRecurrence[{2, 4, -8, -3, 6}, {1, 2, 3, 6, 10}, 50]] (* G. C. Greubel, Dec 31 2017 *) PROG (PARI) x='x+O('x^30); Vec((1-x-4*x^2+3*x^3+3*x^4-x^5)/((1-x^2)*(1-2*x)*(1-3*x^2))) \\ G. C. Greubel, Dec 31 2017 (MAGMA) I:=[1, 2, 3, 6, 10]; [1] cat [n le 5 select I[n] else 2*Self(n-1) + 4*Self(n-2) - 8*Self(n-3) - 3*Self(n-4) + 6*Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 31 2017 CROSSREFS Cf. A036555, A036556. Sequence in context: A001405 A126930 A210736 * A173125 A047131 A231331 Adjacent sequences:  A036554 A036555 A036556 * A036558 A036559 A036560 KEYWORD nonn,base AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 00:14 EDT 2019. Contains 328025 sequences. (Running on oeis4.)