login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123740 Characteristic sequence for Wythoff AB-numbers A003623. 8
0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Left shifted sequence is the characteristic function of A035336, and also the second lowest digit of the Zeckendorf expansion of n. - Franklin T. Adams-Watters, Jun 30 2009

a(n) = A188009(n+2), n>=1. - Wolfdieter Lang, Jun 27 2011

Doubling the 0’s in the infinite Fibonacci word A003849 gives (a(n)). - Michel Dekking, Sep 09 2016

REFERENCES

See references under A000201.

LINKS

Table of n, a(n) for n=1..100.

Michel Dekking and Michael Keane, On the conjugacy class of the Fibonacci dynamical system, arXiv preprint arXiv:1608.04487 [Math.DS], 2016.

FORMULA

a(n) = 1 if n=A(B(k)) for some k>=1, else 0, with A(k):=A000201(k) and B(k):=A001950(k), k>=1.

a(n) = 1-(1-h(n))-(1-h(n+1)) = h(n)-(1-h(n+1))= h(n)*h(n+1) with h(n):=A005614(n-1), n>=1, the rabbit sequence.

a(n) = A(n+2)-A(n)-3. - Wolfdieter Lang, Jun 27 2011

CROSSREFS

Cf. A003623, A000201, A001950, A188009.

Cf. A003849, A014417. - Franklin T. Adams-Watters, Jun 30 2009

Sequence in context: A025125 A147873 A103589 * A129272 A059648 A079261

Adjacent sequences:  A123737 A123738 A123739 * A123741 A123742 A123743

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Oct 13 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 11:35 EST 2018. Contains 317238 sequences. (Running on oeis4.)