The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123740 Characteristic sequence for Wythoff AB-numbers A003623. 8
 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Left shifted sequence is the characteristic function of A035336, and also the second lowest digit of the Zeckendorf expansion of n. - Franklin T. Adams-Watters, Jun 30 2009 a(n) = A188009(n+2), n>=1. - Wolfdieter Lang, Jun 27 2011 Doubling the 0’s in the infinite Fibonacci word A003849 gives (a(n)). - Michel Dekking, Sep 09 2016 This is a morphic sequence, i.e., the letter-to-letter image of the fixed point of a morphism. The fixed point is the unique fixed point A270788 of the three symbol Fibonacci morphism. The letter-to-letter map is 1->0, 2->0, 3->1. - Michel Dekking, May 02 2019 REFERENCES See references under A000201. LINKS Michel Dekking and Michael Keane, On the conjugacy class of the Fibonacci dynamical system, arXiv preprint arXiv:1608.04487 [math.DS], 2016. Michel Dekking and Michael Keane, On the conjugacy class of the Fibonacci dynamical system, Theoretical Computer Science 668 (2017), 59-69. FORMULA a(n) = 1 if n=A(B(k)) for some k>=1, else 0, with A(k):=A000201(k) and B(k):=A001950(k), k>=1. a(n) = 1-(1-h(n))-(1-h(n+1)) = h(n)-(1-h(n+1))= h(n)*h(n+1) with h(n):=A005614(n-1), n>=1, the rabbit sequence. a(n) = A(n+2)-A(n)-3. - Wolfdieter Lang, Jun 27 2011 CROSSREFS Cf. A003623, A000201, A001950, A188009, A270788. Cf. A003849, A014417. - Franklin T. Adams-Watters, Jun 30 2009 Sequence in context: A147873 A103589 A305388 * A188472 A286044 A129272 Adjacent sequences:  A123737 A123738 A123739 * A123741 A123742 A123743 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Oct 13 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 13:57 EDT 2020. Contains 336323 sequences. (Running on oeis4.)