login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123741 A second version of Fibonacci factorials besides A003266. 5
1, 2, 24, 630, 52800, 11381760, 6738443712, 10487895163200, 43294107630090240, 469590163875486482400, 13388418681612808458240000, 1001088091286168023193223168000, 196239953628635168336022309340569600 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The formula below is a generalization of n! = Product_{j=1..n} ((n+1) - j) with numbers k replaced by Fibonacci numbers F(k+1):=A000045(k+1), k>=1.

These numbers come up in Vandermonde determinants involving Fibonacci numbers [F(2),...,F(n+1)]. See A123742.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..68

FORMULA

a(n) = Product_{j=1..n} (F(n+2) - F(j+1)), n>=1.

EXAMPLE

n=3: (5-1)*(5-2)*(5-3) = 4*3*2 = 24;

n=4: (8-1)*(8-2)*(8-3)*(8-5) = 7*6*5*3 = 630.

MAPLE

with(combinat): seq(mul(fibonacci(n+2)-fibonacci(j+1), j = 1..n), n = 1 .. 20); # G. C. Greubel, Aug 10 2019

MATHEMATICA

With[{F=Fibonacci}, Table[Product[F[n+2]-F[j+1], {j, n}], {n, 20}]] (* G. C. Greubel, Aug 10 2019 *)

PROG

(PARI) vector(20, n, f=fibonacci; prod(j=1, n, f(n+2)-f(j+1))) \\ G. C. Greubel, Aug 10 2019

(MAGMA) F:=Fibonacci; [(&*[F(n+2)-F(j+1): j in [1..n]]): n in [1..20]] // G. C. Greubel, Aug 10 2019

(Sage) f=fibonacci; [prod(f(n+2)-f(j+1) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Aug 10 2019

(GAP) F:=Fibonacci;; List([1..20], n-> Product([1..n], j-> F(n+2) - F(j+1))); # G. C. Greubel, Aug 10 2019

CROSSREFS

Cf. A003266 (the usual Fibonacci factorials), A123742.

Sequence in context: A009251 A009447 A193442 * A302579 A012216 A012118

Adjacent sequences:  A123738 A123739 A123740 * A123742 A123743 A123744

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Oct 13 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 22:11 EDT 2020. Contains 336214 sequences. (Running on oeis4.)