login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117963 Diagonal sums of a Legendre-binomial triangle for p=3. 3
1, 1, 2, 0, 2, 2, 1, 3, 4, -2, 2, 0, 2, 2, 4, 0, 4, 4, -1, 3, 2, 2, 4, 6, 1, 7, 8, -6, 2, -4, 4, 0, 4, -2, 2, 0, 2, 2, 4, 0, 4, 4, 2, 6, 8, -4, 4, 0, 4, 4, 8, 0, 8, 8, -5, 3, -2, 4, 2, 6, -1, 5, 4, 0, 4, 4, 2, 6, 8, 2, 10, 12, -5, 7, 2, 6, 8, 14, 1, 15, 16, -14, 2, -12, 8, -4, 4, -6, -2, -8, 8, 0, 8, -4, 4, 0, 4, 4, 8, -6, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = a(3n+2)/a(2). Diagonal sums of A117947. A117963 mod 2 is A117964.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..5000

FORMULA

a(n) = sum{k=0..floor(n/2), L(C(n-k,k)/3)} where L(j/p) is the Legendre symbol of j and p.

G.f. satisfies: A(x) = A(x^3)*(1 - 4*x^3 - x^6)/(1 - x - x^2). a(n) == fibonacci(n+1) (mod 3); a(n) == a(n-1) + a(n-2) (mod 3). - Paul D. Hanna, Jul 11 2006

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, #binary(n), A=subst(A, x, x^3+x*O(x^n)) *(1-4*x^3-x^6)/(1-x-x^2+x*O(x^n))); polcoeff(A, n, x)} - Paul D. Hanna, Jul 11 2006

CROSSREFS

Sequence in context: A083817 A286222 A029273 * A112803 A124242 A112274

Adjacent sequences:  A117960 A117961 A117962 * A117964 A117965 A117966

KEYWORD

easy,sign

AUTHOR

Paul Barry, Apr 05 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 12:30 EST 2017. Contains 294971 sequences.