login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117963 Diagonal sums of a Legendre-binomial triangle for p=3. 3
1, 1, 2, 0, 2, 2, 1, 3, 4, -2, 2, 0, 2, 2, 4, 0, 4, 4, -1, 3, 2, 2, 4, 6, 1, 7, 8, -6, 2, -4, 4, 0, 4, -2, 2, 0, 2, 2, 4, 0, 4, 4, 2, 6, 8, -4, 4, 0, 4, 4, 8, 0, 8, 8, -5, 3, -2, 4, 2, 6, -1, 5, 4, 0, 4, 4, 2, 6, 8, 2, 10, 12, -5, 7, 2, 6, 8, 14, 1, 15, 16, -14, 2, -12, 8, -4, 4, -6, -2, -8, 8, 0, 8, -4, 4, 0, 4, 4, 8, -6, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = a(3n+2)/a(2). Diagonal sums of A117947. A117963 mod 2 is A117964.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..5000

FORMULA

a(n) = sum{k=0..floor(n/2), L(C(n-k,k)/3)} where L(j/p) is the Legendre symbol of j and p.

G.f. satisfies: A(x) = A(x^3)*(1 - 4*x^3 - x^6)/(1 - x - x^2). a(n) == fibonacci(n+1) (mod 3); a(n) == a(n-1) + a(n-2) (mod 3). - Paul D. Hanna, Jul 11 2006

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, #binary(n), A=subst(A, x, x^3+x*O(x^n)) *(1-4*x^3-x^6)/(1-x-x^2+x*O(x^n))); polcoeff(A, n, x)} - Paul D. Hanna, Jul 11 2006

CROSSREFS

Sequence in context: A059451 A083817 A029273 * A112803 A124242 A112274

Adjacent sequences:  A117960 A117961 A117962 * A117964 A117965 A117966

KEYWORD

easy,sign

AUTHOR

Paul Barry, Apr 05 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 24 05:55 EDT 2017. Contains 283984 sequences.