The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117966 Balanced ternary enumeration (based on balanced ternary representation) of integers; write n in ternary and then replace 2's with (-1)'s. 37
 0, 1, -1, 3, 4, 2, -3, -2, -4, 9, 10, 8, 12, 13, 11, 6, 7, 5, -9, -8, -10, -6, -5, -7, -12, -11, -13, 27, 28, 26, 30, 31, 29, 24, 25, 23, 36, 37, 35, 39, 40, 38, 33, 34, 32, 18, 19, 17, 21, 22, 20, 15, 16, 14, -27, -26, -28, -24, -23, -25, -30, -29, -31, -18, -17, -19, -15, -14, -16, -21, -20, -22, -36 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS As the graph demonstrates, there are large discontinuities in the sequence between terms 3^i-1 and 3^i, and between terms 2*3^i-1 and 2*3^i. - N. J. A. Sloane, Jul 03 2016 REFERENCES D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, pp. 173-175; 2nd. ed. pp. 190-193. LINKS Gheorghe Coserea, Table of n, a(n) for n = 0..59048 (first 729 terms from A. Karttunen) Ken Levasseur, The Balanced Ternary Number System Tilman Piesk, First 27 numbers with their ternary representation N. J. A. Sloane and Brady Haran, Amazing Graphs II (including Star Wars), Numberphile video (2019) Wikipedia, Balanced ternary FORMULA a(0) = 0, a(3n) = 3a(n), a(3n+1) = 3a(n)+1, a(3n+2) = 3a(n)-1. G.f. satisfies A(x) = 3*A(x^3)*(1+x+x^2) + x/(1+x+x^2). - corrected by Robert Israel, Nov 17 2015 A004488(n) = a(n)^{-1}(-a(n)). I.e., if a(n) <= 0, A004488(n) = A117967(-a(n)) and if a(n) > 0, A004488(n) = A117968(a(n)). a(n) = n - 3 * A005836(A289814(n) + 1). - Andrey Zabolotskiy, Nov 11 2019 EXAMPLE 7 in base 3 is 21; changing the 2 to a (-1) gives (-1)*3+1 = -2, so a(7) = -2. I.e., the number of -2 according to the balanced ternary enumeration is 7, which can be obtained by replacing every -1 by 2 in the balanced ternary representation (or expansion) of -2, which is -1,1. MAPLE f:= proc(n) local L, i;    L:= subs(2=-1, convert(n, base, 3));    add(L[i]*3^(i-1), i=1..nops(L)) end proc: map(f, [\$0..100]); # alternate: N:= 100: # to get a(0) to a(N) g:= 0: for n from 1 to ceil(log[3](N+1)) do g:= convert(series(3*subs(x=x^3, g)*(1+x+x^2)+x/(1+x+x^2), x, 3^n+1), polynom); od: seq(coeff(g, x, j), j=0..N); # Robert Israel, Nov 17 2015 # third Maple program: a:= proc(n) option remember; `if`(n=0, 0,       3*a(iquo(n, 3, 'r'))+`if`(r=2, -1, r))     end: seq(a(n), n=0..3^4-1);  # Alois P. Heinz, Aug 14 2019 MATHEMATICA Map[FromDigits[#, 3] &, IntegerDigits[#, 3] /. 2 -> -1 & /@ Range@ 80] (* Michael De Vlieger, Nov 17 2015 *) PROG (MIT/GNU Scheme:) (define (A117966 n) (let loop ((z 0) (i 0) (n n)) (if (zero? n) z (loop (+ z (* (expt 3 i) (if (= 2 (modulo n 3)) -1 (modulo n 3)))) (1+ i) (floor->exact (/ n 3)))))) -- Antti Karttunen, May 19 2008 (PARI) a(n) = subst(Pol(apply(x->if(x == 2, -1, x), digits(n, 3)), 'x), 'x, 3) vector(73, i, a(i-1))  \\ Gheorghe Coserea, Nov 17 2015 (Python) def a(n):     if n==0: return 0     if n%3==0: return 3*a(n/3)     elif n%3==1: return 3*a((n - 1)/3) + 1     else: return 3*a((n - 2)/3) - 1 print [a(n) for n in range(101)] # Indranil Ghosh, Jun 06 2017 CROSSREFS Cf. A117967, A117968, A001057, A004488, A134028, A274107, A059095, A005836, A289814, A244042. Column k=1 of A319047. Sequence in context: A316629 A254175 A088916 * A303932 A121891 A271590 Adjacent sequences:  A117963 A117964 A117965 * A117967 A117968 A117969 KEYWORD base,sign,look AUTHOR Franklin T. Adams-Watters, Apr 05 2006 EXTENSIONS Name corrected by Andrey Zabolotskiy, Nov 10 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 28 06:26 EDT 2020. Contains 338048 sequences. (Running on oeis4.)