The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117947 T(n,k)=L(C(n,k)/3) where L(j/p) is the Legendre symbol of j and p. 5
 1, 1, 1, 1, -1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, -1, 1, 1, -1, 1, 1, 0, 0, -1, 0, 0, 1, 1, 1, 0, -1, -1, 0, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, -1, 1, 1, -1, 1, 0, 0, 0, 1, -1, 1, 1, -1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Row sums are A059126. Diagonal sums are A117963. Could be called the Legendre-binomial matrix for p=3. The matrix square equals triangle A117939; the matrix log equals triangle A120854 divided by 2. - Paul D. Hanna, Jul 08 2006 LINKS FORMULA Triangle begins 1, 1, 1, 1, -1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, -1, 1, 1, -1, 1, 1, 0, 0, -1, 0, 0, 1, 1, 1, 0, -1, -1, 0, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1, 1 T(n,k) = balanced ternary digit of C(n,k) mod 3. - Paul D. Hanna, Jul 08 2006 PROG (PARI) T(n, k)=(binomial(n, k)+1)%3-1 - Paul D. Hanna, Jul 08 2006 CROSSREFS Cf. A117939 (matrix square), A120854 (2*log). Sequence in context: A185917 A143104 A127236 * A175860 A092152 A179775 Adjacent sequences:  A117944 A117945 A117946 * A117948 A117949 A117950 KEYWORD easy,sign,tabl AUTHOR Paul Barry, Apr 05 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 18:17 EDT 2021. Contains 342853 sequences. (Running on oeis4.)