This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112803 Expansion of 1 + k(q) = 1 + r(q) * r(q^2)^2 in powers of q where r() is the Rogers-Ramanujan continued fraction. 1
 1, 1, -1, -1, 2, 0, -2, 2, 1, -4, 1, 4, -4, -1, 6, -3, -6, 7, 3, -10, 4, 10, -12, -6, 18, -5, -18, 20, 8, -30, 10, 29, -31, -12, 46, -17, -44, 47, 20, -68, 23, 66, -72, -31, 104, -33, -98, 107, 44, -156, 51, 144, -154, -61, 220, -75, -206, 220, 90, -310, 104, 290, -312, -131, 442, -143, -408, 437, 178, -618, 202 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 REFERENCES S. Cooper, On Ramanujan's function k(q)=r(q)r^2(q^2), Ramanujan J., 20 (2009), 311-328. Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 53 LINKS FORMULA Euler transform of period 10 sequence [1, -2, 0, 2, -2, 2, 0, -2, 1, 0, ...]. G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (2 - v)^2 - u*(2 - u*v). Given g.f. k=A(x) then (k-1) * ((2-k) / k)^2 = B(x), (k-1)^2 * (k / (2-k)) = B(x^2) where B(x) = g.f. A078905. G.f.: Product_{k>0} ((1 - x^(10*k - 2)) * (1 - x^(10*k - 5)) * (1 - x^(10*k - 8))^2) / ((1 - x^(10*k - 1)) * (1 - x^(10*k - 4))^2 * (1 - x^(10*k - 6))^2 * (1 - x^(10*k - 9))). G.f.: (f(-x^5, -x^5) * f(-x^2, -x^8)^2) / (f(-x, -x^9) * f(-x^4, -x^6)^2) where f(,) is Ramanujan's two variable theta function. a(n) = A112274(n) unless n=0. EXAMPLE 1 + x - x^2 - x^3 + 2*x^4 - 2*x^6 + 2*x^7 + x^8 - 4*x^9 + x^10 + 4*x^11 + ... PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( prod( k=1, n, (1 - x^k + A)^[0, -1, 2, 0, -2, 2, -2, 0, 2, -1][k%10 + 1]), n))} CROSSREFS Cf. A078905, A112274. Sequence in context: A029273 A117963 * A124242 A112274 A181391 A082054 Adjacent sequences:  A112800 A112801 A112802 * A112804 A112805 A112806 KEYWORD sign AUTHOR Michael Somos, Sep 19 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .