OFFSET
0,2
COMMENTS
Every positive integer occurs exactly twice. Taking a Lucas number (A000032) of terms L(n) starting at a(0), the last two terms are a pair of Fibonacci numbers (A000045). If n is even, then the last two terms are F(n+1) followed by F(n-1), if n is odd they are F(n-1) followed by F(n+1), where F is the Fibonacci sequence. For example, the first L(4) = 7 terms of this sequence are (1,2,1,3,4,5,2) and the last members are 5 and 2 which are equal to F(5) and F(3). Note also that L(n) = F(n-1) + F(n+1).
EXAMPLE
a(9) = 3 because 9 = T(3).
CROSSREFS
KEYWORD
nonn
AUTHOR
Casey Mongoven, Mar 13 2006
STATUS
approved