login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117408 Triangle read by rows: T(n,k) is the number of partitions of n into odd parts in which the largest part occurs k times (1<=k<=n). 2
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 1, 5, 1, 1, 0, 0, 0, 0, 0, 1, 6, 2, 1, 0, 0, 0, 0, 0, 0, 1, 8, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 10, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 12, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 15, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,11

COMMENTS

Row sums yield A000009. T(n,1)=A117409(n). Sum(k*T(n,k),k=1..n)=A092311(n).

LINKS

Table of n, a(n) for n=1..104.

FORMULA

G.f.=G(t,x)=sum(tx^(2k-1)/[(1-tx^(2k-1))product(1-x^(2i-1), i=1..k-1)], k=1..infinity).

EXAMPLE

T(14,2)=4 because we have [7,7],[5,5,3,1],[5,5,1,1,1,1] and [3,3,1,1,1,1,1,1,1,1].

MAPLE

g:=sum(t*x^(2*k-1)/(1-t*x^(2*k-1))/product(1-x^(2*i-1), i=1..k-1), k=1..40): gser:=simplify(series(g, x=0, 35)): for n from 1 to 15 do P[n]:=expand(coeff(gser, x^n)) od: for n from 1 to 15 do seq(coeff(P[n], t^j), j=1..n) od; # yields sequence in triangular form

CROSSREFS

Cf. A000009, A117409, A092311.

Sequence in context: A218786 A218787 A060016 * A228360 A276205 A244966

Adjacent sequences:  A117405 A117406 A117407 * A117409 A117410 A117411

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Mar 13 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 25 10:24 EDT 2017. Contains 287026 sequences.