

A082470


a(n) is the number of k >= 0 such that k! + prime(n) is prime.


7



2, 1, 3, 4, 5, 3, 6, 7, 6, 6, 9, 11, 9, 5, 10, 9, 10, 9, 9, 8, 9, 9, 11, 8, 10, 10, 12, 16, 12, 10, 10, 13, 14, 14, 16, 11, 12, 9, 15, 10, 9, 8, 12, 9, 10, 6, 8, 7, 14, 13, 10, 21, 15, 9, 13, 11, 9, 19, 12, 13, 16, 11, 19, 17, 9, 13
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

k! + p is composite for k >= p since p divides k! for k >= p.
The first 10^6 terms are nonzero. Remarkably, the number 7426189 + m! is composite for all m <= 1793.  T. D. Noe, Mar 02 2010
Apparently it is not known whether a(n) is ever zero.  N. J. A. Sloane, Aug 11 2011


LINKS

Robert Israel, Table of n, a(n) for n = 1..227


EXAMPLE

For n = 4, 3!+7 = 13, 4!+7=31, 5!+7=127 and 6!+7 = 727 are the 4 primes in n!+7.


MAPLE

A082470 := proc(n)
local ctr, j ;
ctr := 0:
for j from 0 to ithprime(n)1 do
if isprime(j!+ithprime(n))=true then
ctr := ctr+1
end if ;
end do ;
ctr
end proc:
seq(A082470(n), n=1..50) ;


MATHEMATICA

Table[Count[Range[0, Prime[n]1]!+Prime[n], _?PrimeQ], {n, 70}] (* Harvey P. Dale, Feb 06 2019 *)


PROG

(Python)
from sympy import isprime, prime
from itertools import count, islice
def agen(): # generator of terms
for n in count(1):
pn, fk, an = prime(n), 1, 0
for k in range(1, pn+1):
if isprime(pn + fk): an += 1
fk *= k
yield an
print(list(islice(agen(), 40))) # Michael S. Branicky, Apr 16 2022
(PARI) nfactppct(n) = { forprime(p=1, n, c=0; for(x=0, n, y=x!+p; if(isprime(y), c++) ); print1(c", ") ) } \\ Cino Hilliard, Apr 15 2004


CROSSREFS

Cf. A092789, A175193, A175194, row lengths of A352912.
Sequence in context: A117407 A232095 A279436 * A101204 A169808 A328395
Adjacent sequences: A082467 A082468 A082469 * A082471 A082472 A082473


KEYWORD

nonn


AUTHOR

Jeff Burch, Apr 27 2003


EXTENSIONS

Edited by Franklin T. AdamsWatters, Aug 01 2006
Offset corrected by Robert Israel, May 26 2021


STATUS

approved



