

A112937


Logarithmic derivative of A112936 such that a(n)=(1/3)*A112936(n+1) for n>0, where A112936 equals the INVERT transform (with offset) of triple factorials A008544.


9



1, 5, 37, 377, 4981, 81305, 1580797, 35637377, 913115701, 26189790425, 830916198157, 28883617580177, 1091455878504421, 44541746007215945, 1952125704702209917, 91440056107001450177, 4558596081095404198741
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..17.


FORMULA

G.f.: log(1+x + 3*x*[Sum_{k>=1} a(n)]) = Sum_{k>=1} a(n)/n*x^n.


EXAMPLE

log(1+x + 3*x*[x + 5*x^2 + 37*x^3 + 377*x^4 + 4981*x^5 +...])
= x + 5/2*x^2 + 37/3*x^3 + 377/4*x^4 + 4981/5*x^5 + ...


PROG

(PARI) {a(n)=local(F=1+x+x*O(x^n)); for(i=1, n, F=1+x+3*x^2*deriv(F)/F); return(n*polcoeff(log(F), n, x))}


CROSSREFS

Cf. A008544, A112936; A112934, A112935, A112938, A112939, A112940, A112941, A112942, A112943.
Sequence in context: A129137 A055869 A208231 * A258378 A092649 A179923
Adjacent sequences: A112934 A112935 A112936 * A112938 A112939 A112940


KEYWORD

nonn


AUTHOR

Paul D. Hanna, Oct 09 2005


STATUS

approved



