This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273954 E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * exp(n*x) * A(x)^n. 2
 1, 1, 5, 37, 393, 5481, 95053, 1975821, 47939601, 1330923601, 41629292181, 1448989481589, 55561575788953, 2327512861252281, 105767732851318749, 5182512561142513501, 272391086209524010017, 15287595381259195453089, 912525533175190887597349, 57726267762799335649572549, 3857920038503904547005285801, 271614728547491787061947377161, 20093834620842842461382077611117, 1558382859432019830857786931421869, 126435607093771419896444568955180081 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..370 FORMULA E.g.f.: -LambertW(-x*exp(x)) / (x*exp(x)). [corrected by Vaclav Kotesovec, Jun 23 2016] E.g.f.: exp( L(x) ) where L(x) = -LambertW(-x*exp(x)) is the e.g.f. of A216857. a(n) ~ sqrt(1+LambertW(exp(-1))) * n^(n-1) / (exp(n-1) * LambertW(exp(-1))^n). - Vaclav Kotesovec, Jun 23 2016 E.g.f.: A(x) = exp(x*exp(x)*A(x)). - Alexander Burstein, Aug 11 2018 EXAMPLE E.g.f.: A(x) = 1 + x + 5*x^2/2! + 37*x^3/3! + 393*x^4/4! + 5481*x^5/5! + 95053*x^6/6! + 1975821*x^7/7! + 47939601*x^8/8! + 1330923601*x^9/9! + 41629292181*x^10/10! + 1448989481589*x^11/11! + 55561575788953*x^12/12! +... such that A(x) = 1 + x*exp(x)*A(x) + x^2/2!*exp(2*x)*A(x)^2 + x^3/3!*exp(3*x)*A(x)^3 + x^4/4!*exp(4*x)*A(x)^4 + x^5/5!*exp(5*x)*A(x)^5 + x^6/6!*exp(6*x)*A(x)^6 +... The logarithm of A(x) begins: log(A(x)) = x + 4*x^2/2! + 24*x^3/3! + 224*x^4/4! + 2880*x^5/5! + 47232*x^6/6! + 942592*x^7/7! + 22171648*x^8/8! + 600698880*x^9/9! + 18422374400*x^10/10! +...+ A216857(n)*x^n/n! +... which equals -LambertW(-x*exp(x)). MATHEMATICA CoefficientList[Series[-LambertW[-x*E^x] / (x*E^x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 23 2016 *) PROG (PARI) {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, x^m/m!*exp(m*x +x*O(x^n))*A^m) ); n!*polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) (PARI) x='x+O('x^50); Vec(serlaplace(-lambertw(-x*exp(x))/(x*exp(x)))) \\ G. C. Greubel, Nov 16 2017 CROSSREFS Cf. A273953, A216857. Sequence in context: A208231 A112937 A258378 * A092649 A179923 A190628 Adjacent sequences:  A273951 A273952 A273953 * A273955 A273956 A273957 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 03:38 EDT 2019. Contains 328106 sequences. (Running on oeis4.)