login
A208231
Sum of the minimum cycle length over all functions f:{1,2,...,n}->{1,2,...,n} (endofunctions).
3
0, 1, 5, 37, 373, 4761, 73601, 1336609, 27888281, 657386305, 17276807089, 500876786301, 15879053677697, 546470462226313, 20288935994319929, 808320431258439121, 34397370632215764001, 1557106493482564625793, 74713970491718324746529, 3787792171563440619543133, 202314171910557294992453009
OFFSET
0,3
COMMENTS
Sum of the number of endofunctions whose cycle lengths are >=i for all i >=1. A000312 + A065440 + A134362 + A208230 + ...
LINKS
FORMULA
E.g.f.: A(T(x)) = Sum_{k>=1} exp( Sum_{i>=k} T(x)^i/i) - 1 where A(x) is the e.g.f. for A028417 and T(x) is the e.g.f. for A000169.
MAPLE
b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!*
b(n-j, min(m, j))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> add(b(j$2)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, May 20 2016
MATHEMATICA
nn=20; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Apply[Plus, Table[Range[0, nn]!CoefficientList[Series[Exp[Sum[t^i/i, {i, n, nn}]]-1, {x, 0, nn}], x], {n, 1, nn}]]
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jan 10 2013
STATUS
approved