This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258378 O.g.f. satisfies A^3(z) = 1/(1 - z)*( BINOMIAL(BINOMIAL(A(z))) )^2. 6
 1, 5, 37, 385, 5417, 99421, 2296077, 64510617, 2142013137, 82103710517, 3566271497845, 173005328363057, 9265752053418233, 542783129304580237, 34511577062800532573, 2366512551126709790793, 174056559606294111346593, 13666923859188010833522789, 1140970414332381380968275653 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The binomial transform of an o.g.f. A(z) is given by BINOMIAL(A(z)) = 1/(1 - z)*A(z/(1 - z)). For general remarks on a solution to the functional equation A^(N+1)(z) = 1/(1 - z)*(BINOMIAL(BINOMIAL(A(z))) )^N for integer N, and the connection with triangle A145901 see A258377 (case N = 1). This is the case N = 2. From Peter Bala, Dec 06 2017: (Start) a(n) appears to be of the form 4*m + 1. Calculation suggests that for k = 1,2,3,..., the sequence a(n) (mod 2^k) is purely periodic with period length a divisor of 2^(k-1). For example, a(n) (mod 8) = (1, 5, 5, 1, 1, 5, 5, 1,...) seems to be purely periodic with period length 4 and a(n) (mod 16) = (1, 5, 5, 1, 9, 13, 13, 9, 1, 5, 5, 1, 9, 13, 13, 9,...) seems to be purely periodic with period length 8 (both checked up to n = 1000). (End) LINKS N. J. A. Sloane, Transforms. FORMULA a(0) = 1 and for n >= 1, a(n) = 1/n*Sum_{i = 0..n-1} R(i+1,2)*a(n-1-i), where R(n,x) denotes the n-th row polynomial of A145901. O.g.f.: A(z) = 1 + 5*z + 37*z^2 + 385*z^3 + 5417*z^4 + ... satisfies A^3(z) = 1/(1 - z)*1/(1 - 2*z)^2*A^2(z/(1 - 2*z)). O.g.f.: A(z) = exp( Sum_{k >= 1} R(k,2)*z^k/k ). MAPLE with(combinat): #recursively define the row polynomials R(n, x) of A145901 R := proc (n, x) option remember; if n = 0 then 1 else 1 + x*add(binomial(n, i)*2^(n-i)*R(i, x), i = 0..n-1) end if; end proc: #define a family of sequences depending on an integer parameter k a := proc (n, k) option remember; if n = 0 then 1 else 1/n*add(R(i+1, k)*a(n-1-i, k), i = 0..n-1) end if; end proc: # display the case k = 2 seq(a(n, 2), n = 0..18); MATHEMATICA R[n_, x_] := R[n, x] = If[n == 0, 1, 1 + x*Sum[Binomial[n, i]*2^(n - i)*R[i, x], {i, 0, n - 1}]]; a[n_, k_] := a[n, k] = If[n == 0, 1, 1/n*Sum[R[i + 1, k]*a[n - 1 - i, k], {i, 0, n - 1}]]; a[n_] := a[n, 2]; a /@ Range[0, 18] (* Jean-François Alcover, Oct 02 2019 *) CROSSREFS Cf. A019538, A145901, A258377 (N = 1), A258379 (N = 3), A258380 (N = 4), A258381 (N = 5). Sequence in context: A055869 A208231 A112937 * A273954 A092649 A179923 Adjacent sequences:  A258375 A258376 A258377 * A258379 A258380 A258381 KEYWORD nonn,easy AUTHOR Peter Bala, May 28 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 09:32 EST 2019. Contains 329862 sequences. (Running on oeis4.)