The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028417 Sum over all n! permutations of n elements of minimum lengths of cycles. 10
 1, 3, 10, 45, 236, 1505, 10914, 90601, 837304, 8610129, 96625970, 1184891081, 15665288484, 223149696601, 3394965018886, 55123430466945, 948479737691504, 17289345305870561, 332019600921360594, 6713316975465246889, 142321908843254560540, 3161718732648662557161 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..450 FORMULA E.g.f.: Sum[k>0, -1+ exp(Sum(j>=k, x^j/j))]. - Vladeta Jovovic, Jul 26 2004 a(n) = Sum_{k=1..n} k * A145877(n,k). - Alois P. Heinz, Jul 28 2014 MAPLE b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!*       b(n-j, min(m, j))*binomial(n-1, j-1), j=1..n))     end: a:= n-> b(n, infinity): seq(a(n), n=1..25);  # Alois P. Heinz, May 14 2016 MATHEMATICA Drop[Apply[Plus, Table[nn=25; Range[0, nn]!CoefficientList[Series[Exp[Sum[ x^i/i, {i, n, nn}]]-1, {x, 0, nn}], x], {n, 1, nn}]], 1] (* Geoffrey Critzer, Jan 10 2013 *) b[n_, m_] := b[n, m] = If[n == 0, m, Sum[(j-1)! b[n-j, Min[m, j]]* Binomial[n-1, j-1], {j, n}]]; a[n_] := b[n, Infinity]; Array[a, 25] (* Jean-François Alcover, Apr 21 2020, after Alois P. Heinz *) CROSSREFS Cf. A028418, A046746, A006128. Cf. A005225. Column k=1 of A322383. Sequence in context: A293554 A211193 A134018 * A060311 A184947 A330250 Adjacent sequences:  A028414 A028415 A028416 * A028418 A028419 A028420 KEYWORD nonn AUTHOR Joe Keane (jgk(AT)jgk.org) EXTENSIONS More terms from Vladeta Jovovic, Sep 19 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 08:24 EDT 2021. Contains 343064 sequences. (Running on oeis4.)