This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112934 a(0) = 1; a(n+1) = Sum_{k, 0<=k<=n} a(k)*A001147(n-k), where A001147 = double factorial numbers. 17
 1, 1, 2, 6, 26, 158, 1282, 13158, 163354, 2374078, 39456386, 737125446, 15279024026, 347786765150, 8621313613954, 231139787526822, 6663177374810266, 205503866668090750, 6751565903597571842 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA INVERT transform of double factorials (A001147), shifted right one place, where g.f. A(x) satisfies: A(x) = 1 + x*[d/dx x*A(x)^2]/A(x)^2. G.f. A(x) satisfies: A(x) = 1+x + 2*x^2*[d/dx A(x)]/A(x) (log derivative). G.f.: A(x) = 1+x +2*x^2/(1-3*x -2*2*1*x^2/(1-7*x -2*3*3*x^2/(1-11*x -2*4*5*x^2/(1-15*x -... -2*n*(2*n-3)*x^2/(1-(4*n-1)*x -...)))) (continued fraction). G.f.: A(x) = 1/(1-x/(1 -1*x/(1-2*x/(1 -3*x/(1-4*x(1 -...))))))) (continued fraction). From Paul Barry, Dec 04 2009: (Start) The g.f. of a(n+1) is 1/(1-2x/(1-x/(1-4x/(1-3x/(1-6x/(1-5x/(1-.... (continued fraction). The Hankel transform of a(n+1) is A137592. (End) a(n) = Sum_{k,0<=k<=n}A111106(n,k). - Philippe Deléham, Jun 20 2006 a(n) = upper left term in M^n, M = the production matrix: 1, 1 1, 1, 2 1, 1, 2, 3 1, 1, 2, 3, 4 1, 1, 2, 3, 4, 5 ... - Gary W. Adamson, Jul 08 2011 Another production matrix Q is: 1, 1, 0, 0, 0,... 1, 0, 3, 0, 0,... 1, 0, 0, 5, 0,... 1, 0, 0, 0, 7,... ... The sequence is generated by extracting the upper left term of powers of Q. By extracting the top row of Q^n, we obtain a triangle with the sequence in the left column and row sums = (1, 2, 6, 26, 158,...): (1), (1, 1), (2, 1, 3), (6, 2, 3, 15), (26, 6, 6, 15, 105),... - Gary W. Adamson, Jul 21 2016 a(n) = (2*n - 1) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011 G.f.: 1 / (1 - b(0)*x / (1 - b(1)*x / ...)) where b = A028310. - Michael Somos, Mar 31 2012 From Sergei N. Gladkovskii, Aug 11 2012,  Aug 12 2012, Dec 26 2012, Mar 20 2013, Jun 02 2013, Aug 14 2013, Oct 22 2013: (Start) Continued fractions: G.f. 1/(G(0)-x) where G(k) = 1 - x*(k+1)/G(k+1). G.f. 1 + x/(G(0)-x) where G(k) = 1 - x*(k+1)/G(k+1). G.f.: A(x) = 1 + x/(G(0) - x) where G(k) = 1 + (2*k+1)*x - x*(2*k+2)/G(k+1). G.f.: Q(0) where Q(k) = 1 - x*(2*k-1)/(1 - x*(2*k+2)/Q(k+1)). G.f.: 2/G(0) where G(k) = 1 + 1/(1 - x/(x + 1/(2*k-1)/G(k+1))). G.f.: 3*x - G(0) where G(k) = 3*x - 2*x*k - 1 - x*(2*k-1)/G(k+1). G.f.: 1 + x*Q(0) where Q(k) = 1 - x*(2*k+2)/(x*(2*k+2) - 1/(1 - x*(2*k+1)/(x*(2*k+1) - 1/Q(k+1)))). (End) a(n) ~ n^(n-1) * 2^(n-1/2) / exp(n). - Vaclav Kotesovec, Feb 22 2014 EXAMPLE A(x) = 1 + x + 2*x^2 + 6*x^3 + 26*x^4 + 158*x^5 + 1282*x^6 +... 1/A(x) = 1 - x - x^2 - 3*x^3 - 15*x^4 - 105*x^5 -... -A001147(n)*x^(n+1)-... a(4) = a(3+1) = sum_{k=0 to 3} a(k)*A001147(3-k) = a(0)*5!! + a(1)*3!! + a(2)*1 + a(3)*1 = 1*15 + 1*3 + 2*1 + 6*1 = 26. - Michael B. Porter, Jul 22 2016 MAPLE a_list := proc(len) local A, n; A[0] := 1; A[1] := 1; for n from 2 to len-1 do A[n] := (2*n-1)*A[n-1] - add(A[j]*A[n-j], j=1..n-1) od; convert(A, list) end: a_list(19); # Peter Luschny, May 22 2017 MATHEMATICA a[0] = 1; a[n_] := a[n] = Sum[a[k]*(2n - 2k - 3)!!, {k, 0, n - 1}]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Oct 12 2005 *) PROG (PARI) {a(n)=local(F=1+x+x*O(x^n)); for(i=1, n, F=1+x+2*x^2*deriv(F)/F); return(polcoeff(F, n, x))} (PARI) {a(n) = local(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2*k - 1) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */ CROSSREFS Cf. A001147, A112935 (log derivative); A112936, A112937, A112938, A112939, A112940, A112941, A112942, A112943. Sequence in context: A218691 A099758 A099760 * A135922 A213430 A103367 Adjacent sequences:  A112931 A112932 A112933 * A112935 A112936 A112937 KEYWORD nonn AUTHOR Philippe Deléham and Paul D. Hanna, Oct 09 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.