The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110616 A convolution triangle of numbers based on A001764. 5
 1, 1, 1, 3, 2, 1, 12, 7, 3, 1, 55, 30, 12, 4, 1, 273, 143, 55, 18, 5, 1, 1428, 728, 273, 88, 25, 6, 1, 7752, 3876, 1428, 455, 130, 33, 7, 1, 43263, 21318, 7752, 2448, 700, 182, 42, 8, 1, 246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Reflected version of A069269. - Vladeta Jovovic, Sep 27 2006 With offset 1 for n and k, T(n,k) = number of Dyck paths of semilength n for which all descents are of even length (counted by A001764) with no valley vertices at height 1 and with k returns to ground level. For example, T(3,2)=2 counts U^4 D^4 U^2 D^2, U^2 D^2 U^4 D^4 where U=upstep, D=downstep and exponents denote repetition. - David Callan, Aug 27 2009 Riordan array (f(x), x*f(x)) with f(x) = (2/sqrt(3*x))*sin((1/3)*arcsin(sqrt(27*x/4))). - Philippe Deléham, Jan 27 2014 Antidiagonals of convolution matrix of Table 1.4, p. 397, of Hoggatt and Bicknell. - Tom Copeland, Dec 25 2019 LINKS Naiomi Cameron, J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1. V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405. Sheng-Liang Yang, LJ Wang, Taylor expansions for the m-Catalan numbers, Australasian Journal of Combinatorics, Volume 64(3) (2016), Pages 420-431. FORMULA T(n, k) = Sum_{j>=0} T(n-1, k-1+j)*A000108(j); T(0, 0) = 1; T(n, k) = 0 if k < 0 or if k > n. G.f.: 1/(1 - x*y*TernaryGF) = 1 + (y)x + (y+y^2)x^2 + (3y+2y^2+y^3)x^3 +... where TernaryGF = 1 + x + 3x^2 + 12x^3 + ... is the GF for A001764. - David Callan, Aug 27 2009 T(n, k) = ((k+1)*binomial(3*n-2*k,2*n-k))/(2*n-k+1). - Vladimir Kruchinin, Nov 01 2011 EXAMPLE Triangle begins: 1; 1, 1; 3, 2, 1; 12, 7, 3, 1; 55, 30, 12, 4, 1; 273, 143, 55, 18, 5, 1; 1428, 728, 273, 88, 25, 6, 1; 7752, 3876, 1428, 455, 130, 33, 7, 1; 43263, 21318, 7752, 2448, 700, 182, 42, 8, 1; 246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1; ... MATHEMATICA Table[(k + 1) Binomial[3 n - 2 k, 2 n - k]/(2 n - k + 1), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 28 2017 *) PROG (Maxima) T(n, k):=((k+1)*binomial(3*n-2*k, 2*n-k))/(2*n-k+1); // Vladimir Kruchinin, Nov 01 2011 CROSSREFS Successive columns: A001764, A006013, A001764, A006629, A102893, A006630, A102594, A006631; row sums: A098746; see also A092276. Sequence in context: A184182 A118435 A115085 * A059418 A092582 A213262 Adjacent sequences: A110613 A110614 A110615 * A110617 A110618 A110619 KEYWORD nonn,tabl AUTHOR Philippe Deléham, Sep 14 2005, Jun 15 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 23:44 EST 2022. Contains 358485 sequences. (Running on oeis4.)