This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213262 Triangle read by rows: R*(n,k) (n>=2, k from 2 to n-1 (to 2 if n = 2), where R*(n,k) = number of trees with n nodes and k unlabeled end-nodes. 2
 1, 1, 1, 1, 3, 2, 1, 12, 9, 3, 1, 60, 52, 18, 4, 1, 360, 360, 136, 30, 5, 1, 2520, 2880, 1205, 280, 45, 6, 1, 20160, 26040, 12090, 3025, 500, 63, 7, 1, 181440, 262080, 134610, 36546, 6375, 812, 84, 8, 1, 1814400, 2903040, 1641360, 484260, 90126, 11935, 1232, 108, 9, 1, 19958400, 35078400, 21712320, 6951840, 1386217, 193326, 20510, 1776, 135, 10, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,5 COMMENTS All nodes are labeled except for the end-nodes. LINKS F. Harary, A. Mowshowitz and J. Riordan, Labeled trees with unlabeled end-points, J. Combin. Theory, 6 (1969), 60-64. EXAMPLE Triangle begins: [1], [1], [1, 1], [3, 2, 1], [12, 9, 3, 1], [60, 52, 18, 4, 1], [360, 360, 136, 30, 5, 1], [2520, 2880, 1205, 280, 45, 6, 1], [20160, 26040, 12090, 3025, 500, 63, 7, 1], [181440, 262080, 134610, 36546, 6375, 812, 84, 8, 1], [1814400, 2903040, 1641360, 484260, 90126, 11935, 1232, 108, 9, 1], ... MAPLE # This is for n >= 3: with(combinat); R:=proc(n, k) # This is for A151880 if n=1 then if k=1 then RETURN(1) else RETURN(0); fi     elif (n=2 and k=2) then RETURN(1)     elif (n=2 and k>2) then RETURN(0)     else stirling2(n-2, n-k)*n!/k!;     fi; end; Rstar:=proc(n, k) if k=2 then      if n <=4 then RETURN(1); else RETURN((n-2)!/2); fi; else    if k <= n-2 then add(binomial(n-i-1, k-i)*R(n-k, i), i=2..n-1);    elif k=n-1 then 1;    else 0;    fi; fi; end; g:=n->[seq(Rstar(n, k), k=2..n-1)]; [seq(g(n), n=3..16)]; MATHEMATICA r[n_, k_] := Which[ n == 1, If[k == 1, Return[1], Return[0]], n == 2 && k == 2, Return[1], n == 2 && k > 2, Return[0], n > k > 0, StirlingS2[n-2, n-k]*n!/k!, True, 0]; rstar[n_, k_] := Which[ k == 2, If[ n <= 4 , Return[1], Return[(n-2)!/2]], k <= n-2, Sum[ Binomial[n-i-1, k-i]*r[n-k, i], {i, 2, n-1}] , k == n-1 , 1, True, 0]; g[n_] := Table[rstar[n, k], {k, 2, n-1}]; Join[{1}, Table[g[n], {n, 3, 13}] // Flatten] (* Jean-François Alcover, Oct 05 2012, translated from Maple *) CROSSREFS Row sums give A001258. This is an improved version of A151880. Sequence in context: A110616 A059418 A092582 * A280512 A068440 A246381 Adjacent sequences:  A213259 A213260 A213261 * A213263 A213264 A213265 KEYWORD nonn,tabf AUTHOR N. J. A. Sloane, Jun 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 21 04:59 EDT 2019. Contains 321364 sequences. (Running on oeis4.)