login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110614 a(n+3) = 5*a(n+2) - 2*a(n+1) - 8*a(n), a(0) = 1, a(1) = 5, a(2) = 15. 2
1, 5, 15, 57, 215, 841, 3319, 13193, 52599, 210057, 839543, 3356809, 13424503, 53692553, 214759287, 859015305, 3436017527, 13743982729, 54975756151, 219902675081, 879610001271, 3518438606985, 14073751631735, 56295000934537, 225179992553335, 900719947843721 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

See comment for A110613.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,-2,-8).

FORMULA

G.f.: (1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)).

a(n) + a(n+1) = A063376(n+1).

a(n) = (-7*(-1)^n + 5*2^(1+n) + 3*4^(1+n)) / 15. - Colin Barker, Feb 05 2017

MAPLE

seriestolist(series((1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2ibasejsumseq[(.5'i - .5'k - .5i' + .5k' - .5'ij' - .5'ji' - .5'jk' - .5'kj')('i + j' + 'ij' + 'ji')] Sumtype is set to: sum[Y[15]] = sum[ * ] (disregarding signs)

MATHEMATICA

LinearRecurrence[{5, -2, -8}, {1, 5, 15}, 30] (* Harvey P. Dale, Dec 28 2013 *)

PROG

(PARI) Vec((1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)) + O(x^30)) \\ Colin Barker, Feb 05 2017

CROSSREFS

Cf. A110613, A063376.

Sequence in context: A165731 A203294 A149589 * A149590 A149591 A149592

Adjacent sequences:  A110611 A110612 A110613 * A110615 A110616 A110617

KEYWORD

easy,nonn

AUTHOR

Creighton Dement, Jul 31 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 09:49 EDT 2017. Contains 288813 sequences.