login
A110614
a(n+3) = 5*a(n+2) - 2*a(n+1) - 8*a(n), a(0) = 1, a(1) = 5, a(2) = 15.
2
1, 5, 15, 57, 215, 841, 3319, 13193, 52599, 210057, 839543, 3356809, 13424503, 53692553, 214759287, 859015305, 3436017527, 13743982729, 54975756151, 219902675081, 879610001271, 3518438606985, 14073751631735, 56295000934537, 225179992553335, 900719947843721
OFFSET
0,2
COMMENTS
See comment for A110613.
FORMULA
G.f.: (1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)).
a(n) + a(n+1) = A063376(n+1).
a(n) = (-7*(-1)^n + 5*2^(1+n) + 3*4^(1+n)) / 15. - Colin Barker, Feb 05 2017
MAPLE
seriestolist(series((1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2ibasejsumseq[(.5'i - .5'k - .5i' + .5k' - .5'ij' - .5'ji' - .5'jk' - .5'kj')('i + j' + 'ij' + 'ji')] Sumtype is set to: sum[Y[15]] = sum[ * ] (disregarding signs)
MATHEMATICA
LinearRecurrence[{5, -2, -8}, {1, 5, 15}, 30] (* Harvey P. Dale, Dec 28 2013 *)
PROG
(PARI) Vec((1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)) + O(x^30)) \\ Colin Barker, Feb 05 2017
CROSSREFS
Sequence in context: A343841 A203294 A149589 * A149590 A149591 A149592
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Jul 31 2005
STATUS
approved