This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110213 a(n+3) = 6*a(n) - 5*a(n+2), a(0) = 1, a(1) = -7, a(2) = 35. 4
 1, -7, 35, -169, 803, -3805, 18011, -85237, 403355, -1908709, 9032123, -42740485, 202250171, -957058117, 4528847675, -21430737349, 101411338043, -479883604165, 2270833596731, -10745699955397, 50849198151995, -240620989179589, 1138630746165563, -5388058541915845 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (-5,0,6). FORMULA G.f. (-1+2*x)/((x-1)*(6*x^2+6*x+1)) a(x)=(3-Sqrt[3]+(7-8*Sqrt[3])(-3+Sqrt[3])^x+(-3-Sqrt[3])^x (-10+9*Sqrt[3]))/(13*(-3+Sqrt[3])). - Harvey P. Dale, Mar 01 2015 MAPLE seriestolist(series((-1+2*x)/((x-1)*(6*x^2+6*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2baseksumseq[A*B] with A = + 'i + 'ii' + 'ij' + 'ik' and B = + .5'i - .5'j + .5'k + .5i' + .5j' - .5k' - .5'ij' - .5'ik' + .5'ji' + .5'ki' Sumtype is set to: sum[(Y[0], Y[1], Y[2]), mod(3) MATHEMATICA LinearRecurrence[{-5, 0, 6}, {1, -7, 35}, 30] (* Harvey P. Dale, Mar 01 2015 *) CROSSREFS Cf. A110210, A110211, A110212. Sequence in context: A291237 A037099 A055421 * A034348 A249793 A268990 Adjacent sequences:  A110210 A110211 A110212 * A110214 A110215 A110216 KEYWORD easy,sign AUTHOR Creighton Dement, Jul 16 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.