login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110213 a(n+3) = 6*a(n) - 5*a(n+2), a(0) = 1, a(1) = -7, a(2) = 35. 4
1, -7, 35, -169, 803, -3805, 18011, -85237, 403355, -1908709, 9032123, -42740485, 202250171, -957058117, 4528847675, -21430737349, 101411338043, -479883604165, 2270833596731, -10745699955397, 50849198151995, -240620989179589, 1138630746165563, -5388058541915845 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (-5,0,6).

FORMULA

G.f. (-1+2*x)/((x-1)*(6*x^2+6*x+1))

a(x)=(3-Sqrt[3]+(7-8*Sqrt[3])(-3+Sqrt[3])^x+(-3-Sqrt[3])^x (-10+9*Sqrt[3]))/(13*(-3+Sqrt[3])). - Harvey P. Dale, Mar 01 2015

MAPLE

seriestolist(series((-1+2*x)/((x-1)*(6*x^2+6*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2baseksumseq[A*B] with A = + 'i + 'ii' + 'ij' + 'ik' and B = + .5'i - .5'j + .5'k + .5i' + .5j' - .5k' - .5'ij' - .5'ik' + .5'ji' + .5'ki' Sumtype is set to: sum[(Y[0], Y[1], Y[2]), mod(3)

MATHEMATICA

LinearRecurrence[{-5, 0, 6}, {1, -7, 35}, 30] (* Harvey P. Dale, Mar 01 2015 *)

CROSSREFS

Cf. A110210, A110211, A110212.

Sequence in context: A163348 A037099 A055421 * A034348 A249793 A268990

Adjacent sequences:  A110210 A110211 A110212 * A110214 A110215 A110216

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Jul 16 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 16:24 EDT 2017. Contains 287241 sequences.