This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110210 a(n+3) = 6*a(n) - 5*a(n+2), a(0) = -1, a(1) = 1, a(2) = -5. 3
 -1, 1, -5, 19, -89, 415, -1961, 9271, -43865, 207559, -982169, 4647655, -21992921, 104071591, -492472025, 2330402599, -11027583449, 52183085095, -246933009881, 1168499548711, -5529399232985, 26165398105639, -123815993235929, 585903570781735, -2772525465274841 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Index entries for linear recurrences with constant coefficients, signature (-5, 0, 6). FORMULA Superseeker finds: a(n+1) - a(n) = ((-1)^n)*A094433(n+2) (left term in M^n * [1 0 0], M = the 3 X 3 matrix [1 -1 0 / -1 3 -2 / 0 -2 2], offset at 1); a(n+2) - a(n) = ((-1)^(n+1))*A086405(n+1) (Row T(n, 3) of number array A086404. g.f.: (4*x+1)/(6*x^3-5*x-1). - Harvey P. Dale, Nov 09 2014 MAPLE seriestolist(series((1+4*x)/((x-1)*(6*x^2+6*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2baseisumseq[A*B] with A = + 'i + 'ii' + 'ij' + 'ik' and B = + .5'i - .5'j + .5'k + .5i' + .5j' - .5k' - .5'ij' - .5'ik' + .5'ji' + .5'ki' Sumtype is set to: sum[(Y[0], Y[1], Y[2]), mod(3) MATHEMATICA LinearRecurrence[{-5, 0, 6}, {-1, 1, -5}, 30] (* or *) CoefficientList[ Series[ (1+4*x)/(-1-5*x+6*x^3), {x, 0, 30}], x] (* Harvey P. Dale, Nov 09 2014 *) CROSSREFS Cf. A094433, A110211, A110212, A110213. Sequence in context: A259204 A149804 A144036 * A244899 A147139 A149805 Adjacent sequences:  A110207 A110208 A110209 * A110211 A110212 A110213 KEYWORD easy,sign AUTHOR Creighton Dement, Jul 16 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.