login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110211 a(n+3) = 6*a(n) - 5*a(n+2), a(0) = -1, a(1) = 3, a(2) = -15. 3
-1, 3, -15, 69, -327, 1545, -7311, 34593, -163695, 774609, -3665487, 17345265, -82078671, 388400433, -1837930575, 8697180849, -41155501647, 194749924785, -921566538831, 4360899684273, -20635998872655, 97650595130289, -462087577545807, 2186621894493105 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..23.

Index entries for linear recurrences with constant coefficients, signature (-5, 0, 6).

FORMULA

G.f. (1+2*x)/((x-1)*(6*x^2+6*x+1))

a(n)=(9-3*Sqrt[3]+(-3-Sqrt[3])^n*(-4+Sqrt[3])+(-3+Sqrt[3])^n*(-5+2*Sqrt[3]))/(13*(-3+Sqrt[3])) [From Harvey P. Dale, Mar 28 2012]

MAPLE

seriestolist(series((1+2*x)/((x-1)*(6*x^2+6*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 1kbasesumseq[A*B] with A = + 'i + 'ii' + 'ij' + 'ik' and B = + .5'i - .5'j + .5'k + .5i' + .5j' - .5k' - .5'ij' - .5'ik' + .5'ji' + .5'ki' Sumtype is set to: sum[(Y[0], Y[1], Y[2]), mod(3)

MATHEMATICA

LinearRecurrence[{-5, 0, 6}, {-1, 3, -15}, 30] (* Harvey P. Dale, Mar 28 2012 *)

CROSSREFS

Cf. A110210, A110212, A110213.

Sequence in context: A213451 A224749 A122558 * A167874 A277370 A213140

Adjacent sequences:  A110208 A110209 A110210 * A110212 A110213 A110214

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Jul 16 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 16 19:22 EDT 2017. Contains 290626 sequences.