login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110211 a(n+3) = 6*a(n) - 5*a(n+2), a(0) = -1, a(1) = 3, a(2) = -15. 3
-1, 3, -15, 69, -327, 1545, -7311, 34593, -163695, 774609, -3665487, 17345265, -82078671, 388400433, -1837930575, 8697180849, -41155501647, 194749924785, -921566538831, 4360899684273, -20635998872655, 97650595130289, -462087577545807, 2186621894493105 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..23.

Index entries for linear recurrences with constant coefficients, signature (-5, 0, 6).

FORMULA

G.f. (1+2*x)/((x-1)*(6*x^2+6*x+1))

a(n)=(9-3*Sqrt[3]+(-3-Sqrt[3])^n*(-4+Sqrt[3])+(-3+Sqrt[3])^n*(-5+2*Sqrt[3]))/(13*(-3+Sqrt[3])) [From Harvey P. Dale, Mar 28 2012]

MAPLE

seriestolist(series((1+2*x)/((x-1)*(6*x^2+6*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 1kbasesumseq[A*B] with A = + 'i + 'ii' + 'ij' + 'ik' and B = + .5'i - .5'j + .5'k + .5i' + .5j' - .5k' - .5'ij' - .5'ik' + .5'ji' + .5'ki' Sumtype is set to: sum[(Y[0], Y[1], Y[2]), mod(3)

MATHEMATICA

LinearRecurrence[{-5, 0, 6}, {-1, 3, -15}, 30] (* Harvey P. Dale, Mar 28 2012 *)

CROSSREFS

Cf. A110210, A110212, A110213.

Sequence in context: A213451 A224749 A122558 * A167874 A277370 A213140

Adjacent sequences:  A110208 A110209 A110210 * A110212 A110213 A110214

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Jul 16 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 22:32 EST 2017. Contains 295054 sequences.