login
A110212
a(n+3) = 6*a(n) - 5*a(n+2), a(0) = -1, a(1) = 5, a(2) = -25.
3
-1, 5, -25, 119, -565, 2675, -12661, 59915, -283525, 1341659, -6348805, 30042875, -142164421, 672729275, -3183389125, 15063959099, -71283419845, 337316764475, -1596200067781, 7553299819835, -35742598512325, 169135792154939, -800359161855685, 3787340218204475
OFFSET
0,2
COMMENTS
Superseeker finds: a(n+1) - a(n) = ((-1)^n)*A030192(n+1) (Scaled Chebyshev U-polynomial evaluated at sqrt(6)/2)
FORMULA
G.f.: 1/((x-1)*(6*x^2+6*x+1)).
MAPLE
eriestolist(series(1/((x-1)*(6*x^2+6*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2basejsumseq[A*B] with A = + 'i + 'ii' + 'ij' + 'ik' and B = + .5'i - .5'j + .5'k + .5i' + .5j' - .5k' - .5'ij' - .5'ik' + .5'ji' + .5'ki' Sumtype is set to: sum[(Y[0], Y[1], Y[2]), mod(3)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Jul 16 2005
STATUS
approved