|
|
A094433
|
|
a(n) = left term in M^n * [1 0 0], M = the 3 X 3 matrix [1 -1 0 / -1 3 -2 / 0 -2 2].
|
|
4
|
|
|
1, 2, 6, 24, 108, 504, 2376, 11232, 53136, 251424, 1189728, 5629824, 26640576, 126064512, 596543616, 2822874624, 13357986048, 63210668544, 299116094976, 1415432558592, 6697898781696, 31694797338624, 149981391341568
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Right term of M^n * [1 0 0] = A094434(n). a(n)/a(n-1) tends to 3 + sqrt(3) = 4.732050807... 3. A094434(n)/a(n) tends to 1 + sqrt(3) = 2.732050807... 4. M is a "stiffness matrix" with k1 = 1, k2 = 2; in K = [k1 -k1 0 / -k1 (k1 + k2) -k2 / 0 -k2 k2], where K relates to Hooke's Law governing the force on nodes of springs resulting from stretching or compressing the springs. (see A094431).
The eigenvalues of M are 3+sqrt(3), 3-sqrt(3) and 0. - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Mar 23 2008
|
|
REFERENCES
|
Carl D. Meyer, "Matrix Analysis and Applied Linear Algebra", SIAM, 2000, p. 86-87.
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 1..1483
Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
Index entries for linear recurrences with constant coefficients, signature (6,-6).
|
|
FORMULA
|
a(n) = (3+sqrt(3))^(n-2)+(3-sqrt(3))^(n-2) - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Mar 23 2008, corrected R. J. Mathar, Mar 28 2010, Jun 02 2010.
G.f.: x*(1-4*x)/(1-6*x+6*x^2). - R. J. Mathar, Mar 28 2010
|
|
EXAMPLE
|
a(4) = 24 since M^4 * [1 0 0] = [24 -84 60].
G.f. = x + 2*x^2 + 6*x^3 + 24*x^4 + 108*x^5 + 504*x^6 + 2376*x^7 + ...
|
|
MATHEMATICA
|
Table[(MatrixPower[{{1, -1, 0}, {-1, 3, -2}, {0, -2, 2}}, n].{1, 0, 0})[[1]], {n, 24}] (* Robert G. Wilson v *)
Table[(3 + Sqrt[3])^n + (3 - Sqrt[3])^n, {n, 0, 20}] // Simplify (* Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Mar 23 2008 *)
Rest@ CoefficientList[Series[x (1 - 4 x)/(1 - 6 x + 6 x^2), {x, 0, 23}], x] (* Michael De Vlieger, May 01 2019 *)
|
|
PROG
|
(Sage) [lucas_number2(n, 6, 6)for n in range(-1, 23)] # Zerinvary Lajos, Jul 08 2008
|
|
CROSSREFS
|
Cf. A094431, A094432, A094434.
Sequence in context: A171338 A327006 A163824 * A178594 A277248 A189840
Adjacent sequences: A094430 A094431 A094432 * A094434 A094435 A094436
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
Gary W. Adamson, May 02 2004
|
|
EXTENSIONS
|
More terms from Robert G. Wilson v, May 08 2004
|
|
STATUS
|
approved
|
|
|
|