login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094433 a(n) = left term in M^n * [1 0 0], M = the 3 X 3 matrix [1 -1 0 / -1 3 -2 / 0 -2 2]. 4
1, 2, 6, 24, 108, 504, 2376, 11232, 53136, 251424, 1189728, 5629824, 26640576, 126064512, 596543616, 2822874624, 13357986048, 63210668544, 299116094976, 1415432558592, 6697898781696, 31694797338624, 149981391341568 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Right term of M^n * [1 0 0] = A094434(n). a(n)/a(n-1) tends to 3 + sqrt(3) = 4.732050807... 3. A094434(n)/a(n) tends to 1 + sqrt(3) = 2.732050807... 4. M is a "stiffness matrix" with k1 = 1, k2 = 2; in K = [k1 -k1 0 / -k1 (k1 + k2) -k2 / 0 -k2 k2], where K relates to Hooke's Law governing the force on nodes of springs resulting from stretching or compressing the springs. (see A094431).

The eigenvalues of M are 3+sqrt(3), 3-sqrt(3) and 0. - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Mar 23 2008

REFERENCES

Carl D. Meyer, "Matrix Analysis and Applied Linear Algebra", SIAM, 2000, p. 86-87.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..1483

Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.

Index entries for linear recurrences with constant coefficients, signature (6,-6).

FORMULA

a(n) = (3+sqrt(3))^(n-2)+(3-sqrt(3))^(n-2) - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Mar 23 2008, corrected R. J. Mathar, Mar 28 2010, Jun 02 2010.

G.f.: x*(1-4*x)/(1-6*x+6*x^2). - R. J. Mathar, Mar 28 2010

EXAMPLE

a(4) = 24 since M^4 * [1 0 0] = [24 -84 60].

G.f. = x + 2*x^2 + 6*x^3 + 24*x^4 + 108*x^5 + 504*x^6 + 2376*x^7 + ...

MATHEMATICA

Table[(MatrixPower[{{1, -1, 0}, {-1, 3, -2}, {0, -2, 2}}, n].{1, 0, 0})[[1]], {n, 24}] (* Robert G. Wilson v *)

Table[(3 + Sqrt[3])^n + (3 - Sqrt[3])^n, {n, 0, 20}] // Simplify (* Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Mar 23 2008 *)

Rest@ CoefficientList[Series[x (1 - 4 x)/(1 - 6 x + 6 x^2), {x, 0, 23}], x] (* Michael De Vlieger, May 01 2019 *)

PROG

(Sage) [lucas_number2(n, 6, 6)for n in range(-1, 23)] # Zerinvary Lajos, Jul 08 2008

CROSSREFS

Cf. A094431, A094432, A094434.

Sequence in context: A171338 A327006 A163824 * A178594 A277248 A189840

Adjacent sequences:  A094430 A094431 A094432 * A094434 A094435 A094436

KEYWORD

nonn,changed

AUTHOR

Gary W. Adamson, May 02 2004

EXTENSIONS

More terms from Robert G. Wilson v, May 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 13:50 EST 2019. Contains 329877 sequences. (Running on oeis4.)