|
|
A034348
|
|
Number of binary [ n,7 ] codes without 0 columns.
|
|
7
|
|
|
0, 0, 0, 0, 0, 0, 1, 7, 35, 170, 847, 4408, 24297, 143270, 901491, 5985278, 41175203, 287813284, 2009864185, 13848061942, 93369988436, 613030637339, 3908996099141, 24179747870890, 145056691643428, 844229016035010, 4769751989333029, 26181645303024760, 139750488576152520
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,8
|
|
COMMENTS
|
To find the g.f., modify the Sage program below (cf. function f). It is very complicated to write it here. - Petros Hadjicostas, Oct 05 2019
|
|
LINKS
|
Table of n, a(n) for n=1..29.
Discrete algorithms at the University of Bayreuth, Symmetrica.
Harald Fripertinger, Isometry Classes of Codes.
Harald Fripertinger, Snk2: Number of the isometry classes of all binary (n,k)-codes without zero-columns. [See column k=7.]
H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here a(n) = S_{n,7,2}.]
Petr Lisonek, Combinatorial families enumerated by quasi-polynomials, J. Combin. Theory Ser. A 114(4) (2007), 619-630. [See Section 5.]
David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
Wikipedia, Cycle index.
Wikipedia, Projective linear group.
|
|
PROG
|
(Sage) # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
def A034253col(k, length):
G1 = PSL(k, GF(2))
G2 = PSL(k-1, GF(2))
D1 = G1.cycle_index()
D2 = G2.cycle_index()
f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
f = f1 - f2
return f.taylor(x, 0, length).list()
# For instance the Taylor expansion for column k = 7 (this sequence) gives
print(A034253col(7, 30)) #
|
|
CROSSREFS
|
Cf. A034254, A034344, A034345, A034346, A034347, A034349, A253186.
Column k=7 of A034253 and first differences of A034361.
Sequence in context: A037099 A055421 A110213 * A249793 A268990 A005055
Adjacent sequences: A034345 A034346 A034347 * A034349 A034350 A034351
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
More terms from Petros Hadjicostas, Oct 05 2019
|
|
STATUS
|
approved
|
|
|
|