OFFSET
1,1
COMMENTS
Discriminant = -23.
Primes p such that the polynomial x^3-x-1 is irreducible over Zp. The polynomial discriminant is also -23. - T. D. Noe, May 13 2005
Also, primes p such that tau(p) = A000594(p) == -1 (mod 23). [A proof can probably be found in van der Blij (1952). Thanks to Juan Arias-de-Reyna for this reference. - N. J. A. Sloane, Nov 29 2016]
REFERENCES
F. van der Blij, Binary quadratic forms of discriminant -23. Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14, (1952). 498-503; Math. Rev. MR0052462.
John Raymond Wilton, "Congruence properties of Ramanujan's function τ(n)." Proceedings of the London Mathematical Society 2.1 (1930): 1-10. The primes are listed in Table II.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi)
D. H. Lehmer, The Vanishing of Ramanujan's Function tau(n), Duke Mathematical Journal, 14 (1947), pp. 429-433. [Annotated scanned copy]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
J. R. Wilton, Congruence properties of Ramanujan's function τ(n), annotated copy of page 8 only.
MATHEMATICA
Union[QuadPrimes2[2, 1, 3, 10000], QuadPrimes2[2, -1, 3, 10000]] (* see A106856 *)
PROG
(PARI) forprime(p=2, 10^4, if(0==#polrootsmod(x^3-x-1, p), print1(p, ", "))); /* Joerg Arndt, Jul 27 2011 */
(PARI) forprime(p=2, 10^4, if(polisirreducible(Mod(1, p)*(x^3-x-1)), print1(p, ", ") ) ); /* Joerg Arndt, Mar 30 2013 */
(Python)
from itertools import count, islice
from sympy import prime, GF, Poly
from sympy.abc import x
def A106867_gen(): # generator of terms
return filter(lambda p:Poly(x**3-x-1, domain=GF(p)).is_irreducible, (prime(i) for i in count(1)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 09 2005
STATUS
approved