login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106867 Primes of the form 2*x^2+x*y+3*y^2. 9
2, 3, 13, 29, 31, 41, 47, 71, 73, 127, 131, 139, 151, 163, 179, 193, 197, 233, 239, 257, 269, 277, 311, 331, 349, 353, 397, 409, 439, 443, 461, 487, 491, 499, 509, 541, 547, 577, 587, 601, 647, 653, 673, 683, 739, 761, 811, 823, 857, 859, 863, 887, 929, 947 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Discriminant=-23.

Primes p such that the polynomial x^3-x-1 is irreducible over Zp. The polynomial discriminant is also -23. - T. D. Noe, May 13 2005

Also, primes p such that tau(p) = A000594(p) == -1 mod 23. [A proof can probably be found in Val der Blij (1952). Thanks to Juan Arias-de-Reyna for this reference. - N. J. A. Sloane, Nov 29 2016

REFERENCES

van der Blij, F., Binary quadratic forms of discriminant -23. Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14, (1952). 498-503; Math. Rev. MR0052462.

Wilton, John Raymond. "Congruence properties of Ramanujan's function τ(n)." Proceedings of the London Mathematical Society 2.1 (1930): 1-10. The primes are listed in Table II.

LINKS

Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]

D. H. Lehmer, The Vanishing of Ramanujan's Function tau(n), Duke Mathematical Journal, 14 (1947), pp. 429-433. [Annotated scanned copy]

N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)

J. R. Wilton, Congruence properties of Ramanujan's function τ(n), annotated copy of page 8 only.

MATHEMATICA

Union[QuadPrimes2[2, 1, 3, 10000], QuadPrimes2[2, -1, 3, 10000]] (* see A106856 *)

PROG

(PARI) forprime(p=2, 10^4, if(0==#polrootsmod(x^3-x-1, p), print1(p, ", "))); /* Joerg Arndt, Jul 27 2011 */

(PARI) forprime(p=2, 10^4, if(polisirreducible(Mod(1, p)*(x^3-x-1)), print1(p, ", ") ) ); /* Joerg Arndt, Mar 30 2013 */

CROSSREFS

Cf. A086965 (number of distinct zeros of x^3-x-1 mod prime(n)).

Cf. also A000594.

These are the primes in A028929.

Sequence in context: A228991 A141585 A191021 * A141861 A215379 A215375

Adjacent sequences:  A106864 A106865 A106866 * A106868 A106869 A106870

KEYWORD

nonn,easy

AUTHOR

T. D. Noe, May 09 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 13 18:57 EDT 2019. Contains 327981 sequences. (Running on oeis4.)