login
A141861
Primes of the form (prime(2*n)-prime(n))/2*2, where prime(n) is the n-th prime.
0
2, 3, 13, 29, 37, 59, 163, 173, 181, 193, 223, 241, 281, 313, 337, 373, 547, 733, 797, 823, 877, 911, 947, 953, 977, 1051, 1087, 1109, 1117, 1213, 1289, 1381, 1427, 1429, 1459, 1481, 1523, 1693, 1801, 1811, 1901, 1987, 2027, 2029, 2161, 2213, 2251, 2267
OFFSET
1,1
EXAMPLE
If n=3, then (p(2*3)-p(3))/2*2=(13-5)/4=2=a(1).
If n=4, then (p(2*4)-p(4))/2*2=(19-7)/4=3=a(2).
If n=12, then (p(2*12)-p(12))/2*2=(39-37)/4=13=a(3).
If n=23, then (p(2*23)-p(23))/2*2=(199-83)/4=29=a(4).
If n=27, then (p(2*27)-p(27))/2*2=(251-103)/4=37=a(5), etc.
MATHEMATICA
nmax = 48; lastSeq = {}; While[seq = Select[Table[(Prime[2*n] - Prime[n])/4 , {n, 1, nmax^2}], PrimeQ][[1 ;; nmax]]; seq != lastSeq, lastSeq = seq; m += m]; seq (* Jean-François Alcover, Oct 03 2016 *)
CROSSREFS
Cf. A000040.
Sequence in context: A141585 A191021 A106867 * A215379 A215375 A233523
KEYWORD
nonn
AUTHOR
EXTENSIONS
59 inserted, 401 removed, 647 removed and extended by R. J. Mathar, Oct 04 2008
STATUS
approved