OFFSET
0,8
COMMENTS
Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, May 19 2005
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, table 2.14.1 at page 24.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
A. Aboud, J.-P. Bultel, A. Chouria, J.-G. Luque, and O. Mallet, Bell polynomials in combinatorial Hopf algebras, arXiv preprint arXiv:1402.2960 [math.CO], 2014.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
A(x;t) = exp(t*(exp(x)-1)) = Sum_{n>=0} P_n(t) * x^n/n!, where P_n(t) = Sum_{k=0..n} T(n,k)*t^(n-k). - Gheorghe Coserea, Jan 30 2017
Also, P_n(t) * exp(t) = (t * d/dt)^n exp(t). - Michael Somos, Aug 16 2017
T(n, k) = Sum_{j=0..k} E2(k, j)*binomial(n + k - j, 2*k), where E2(k, j) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 21 2021
EXAMPLE
From Gheorghe Coserea, Jan 30: (Start)
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[0] 1;
[1] 1, 0;
[2] 1, 1, 0;
[3] 1, 3, 1, 0;
[4] 1, 6, 7, 1, 0;
[5] 1, 10, 25, 15, 1, 0;
[6] 1, 15, 65, 90, 31, 1, 0;
[7] 1, 21, 140, 350, 301, 63, 1, 0;
[8] 1, 28, 266, 1050, 1701, 966, 127, 1, 0;
[9] 1, 36, 462, 2646, 6951, 7770, 3025, 255, 1, 0;
...
(End)
MAPLE
seq(seq(Stirling2(n, n-k), k=0..n), n=0..8); # Peter Luschny, Feb 21 2021
MATHEMATICA
Table[ StirlingS2[n, m], {n, 0, 10}, {m, n, 0, -1}]//Flatten (* Robert G. Wilson v, Jan 30 2017 *)
PROG
(PARI)
N=11; x='x+O('x^N); t='t; concat(apply(p->Vec(p), Vec(serlaplace(exp(t*(exp(x)-1)))))) \\ Gheorghe Coserea, Jan 30 2017
{T(n, k) = my(A, B); if( n<0 || k>n, 0, A = B = exp(x + x * O(x^n)); for(i=1, n, A = x * A'); polcoeff(A / B, n-k))}; /* Michael Somos, Aug 16 2017 */
(Sage) flatten([[stirling_number2(n, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 11 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved