The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106800 Triangle of Stirling numbers of 2nd kind, S(n, n-k), n >= 0, 0 <= k <= n. 3
 1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 7, 1, 0, 1, 10, 25, 15, 1, 0, 1, 15, 65, 90, 31, 1, 0, 1, 21, 140, 350, 301, 63, 1, 0, 1, 28, 266, 1050, 1701, 966, 127, 1, 0, 1, 36, 462, 2646, 6951, 7770, 3025, 255, 1, 0, 1, 45, 750, 5880, 22827, 42525, 34105, 9330, 511, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, May 19 2005 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835. F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223. LINKS A. Aboud, J.-P. Bultel, A. Chouria, J.-G. Luque, O. Mallet, Bell polynomials in combinatorial Hopf algebras, arXiv preprint arXiv:1402.2960 [math.CO], 2014. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013. Eric Weisstein's World of Mathematics, Bell Polynomial FORMULA A(x;t) = exp(t*(exp(x)-1)) = Sum_{n>=0} P_n(t) * x^n/n!, where P_n(t) = Sum_{k=0..n} T(n,k)*t^(n-k). - Gheorghe Coserea, Jan 30 2017 Also, P_n(t) * exp(t) = (t * d/dt)^n exp(t). - Michael Somos, Aug 16 2017 T(n, k) = Sum_{j=0..k} E2(k, j)*binomial(n + k - j, 2*k), where E2(k, j) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 21 2021 EXAMPLE From Gheorghe Coserea, Jan 30: (Start) Triangle starts: n\k  [0]  [1]   [2]    [3]    [4]    [5]    [6]   [7] [8] [9] [0]   1; [1]   1,   0; [2]   1,   1,    0; [3]   1,   3,    1,     0; [4]   1,   6,    7,     1,     0; [5]   1,  10,   25,    15,     1,     0; [6]   1,  15,   65,    90,    31,     1,     0; [7]   1,  21,  140,   350,   301,    63,     1,    0; [8]   1,  28,  266,  1050,  1701,   966,   127,    1,  0; [9]   1,  36,  462,  2646,  6951,  7770,  3025,  255,  1,  0; ... (End) MAPLE seq(seq(Stirling2(n, n-k), k=0..n), n=0..8); # Peter Luschny, Feb 21 2021 MATHEMATICA Table[ StirlingS2[n, m], {n, 0, 10}, {m, n, 0, -1}] // Flatten (* Robert G. Wilson v, Jan 30 2017 *) PROG (PARI) N=11; x='x+O('x^N); t='t; concat(apply(p->Vec(p), Vec(serlaplace(exp(t*(exp(x)-1))))))  \\ Gheorghe Coserea, Jan 30 2017 {T(n, k) = my(A, B); if( n<0 || k>n, 0, A = B = exp(x + x * O(x^n)); for(i=1, n, A = x * A'); polcoeff(A / B, n-k))}; /* Michael Somos, Aug 16 2017 */ CROSSREFS See A008277 and A048993, which are the main entries for this triangle of numbers. The Stirling1 counterpart is A054654. Row sum: A000110. Column 0: A000012. Column 1: A000217. Main Diagonal: A000007. 1st minor diagonal: A000012. 2nd minor diagonal: A000225. 3rd minor diagonal: A000392. Cf. A008278, A340556. Sequence in context: A144645 A151510 A151512 * A308484 A227320 A318507 Adjacent sequences:  A106797 A106798 A106799 * A106801 A106802 A106803 KEYWORD nonn,tabl AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 12:11 EDT 2021. Contains 342949 sequences. (Running on oeis4.)