login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106802 Trajectory of 2 under the morphism 1->{2, 1, 2, 1, 1, 2, 2, 1}, 2->{1, 1, 1, 2, 2, 1, 2}. 0
2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

T. S. Blyth and E. F. Robertson, Essential Student Algebra: volume 5: Groups: Chapman and Hall, 1986, page 9.

LINKS

Table of n, a(n) for n=0..104.

Index entries for sequences that are fixed points of mappings

MATHEMATICA

s[1, 1] = {1}; s[2, 1] = {2};; s[1, 2] = {2}; s[2, 2] = {1};; s[1, 3] = {1, 2}; s[2, 3] = {1};; s[1, 4] = {1}; s[2, 4] = {1, 2};; s[1, 5] = {1, 2}; s[2, 5] = {2};; s[1, 6] = {2}; s[2, 6] = {1};; w[i_] = s[1, 1 + Mod[i, 6]] v[i_] = s[2, 1 + Mod[i, 6]] S[1] = Flatten[Table[w[i], {i, 1, 6}]] S[2] = Flatten[Table[v[i], {i, 1, 6}]] t[a_] := Flatten[S /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[3]

Nest[Flatten[#]/.{1->{2, 1, 2, 1, 1, 2, 2, 1}, 2->{1, 1, 1, 2, 2, 1, 2}}&, 2, 4]//Flatten (* Harvey P. Dale, Apr 09 2019 *)

CROSSREFS

Cf. A001030, A006338.

Sequence in context: A072047 A327521 A282870 * A269254 A049236 A244259

Adjacent sequences:  A106799 A106800 A106801 * A106803 A106804 A106805

KEYWORD

nonn

AUTHOR

Roger L. Bagula, May 17 2005

EXTENSIONS

Edited by N. J. A. Sloane, Nov 12 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 00:08 EST 2019. Contains 329209 sequences. (Running on oeis4.)