

A054654


Triangle read by rows: matrix product of the binomial coefficients with the Stirling numbers of the first kind.


11



1, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 6, 11, 6, 0, 1, 10, 35, 50, 24, 0, 1, 15, 85, 225, 274, 120, 0, 1, 21, 175, 735, 1624, 1764, 720, 0, 1, 28, 322, 1960, 6769, 13132, 13068, 5040, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,8


COMMENTS

The sum of the entries on each row of the triangle, starting on the 3rd row, equals 0. E.g. 1+(3)+2+0 = 0
The entries on the triangle can be computed as follows. T(n,r) = T(n1,r)  (n1)*T(n1,r1). T(n,r) = 0 when r equals 0 or r > n. T(n,r) = 1 if n==1
Triangle T(n,k) giving coefficients in expansion of n!*C(x,n) in powers of x. E.g. 3!*C(x,3) = x^33*x^2+2*x.
The matrix product of binomial coefficients with the Stirling numbers of the first kind results in the Stirling numbers of the first kind again, but the triangle is shifted by (1,1).
Essentially [1,0,1,0,1,0,1,0,...] DELTA [0,1,1,2,2,3,3,4,4,...] where DELTA is the operator defined in A084938 ; mirror image of the Stirling1 triangle A048994 .  Philippe Deléham, Dec 30 2006


LINKS

Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
Eric Weisstein's World of Mathematics, Pochhammer Symbol
Eric Weisstein's World of Mathematics, Rising Factorial
Eric Weisstein's World of Mathematics, FallingFactorial


FORMULA

n!*binomial(x, n) = Sum T(n, k)*x^(nk), k=0..n.
(In Maple notation:) Matrix product A*B of matrix A[i,j]:=binomial(j1,i1) with i = 1 to p+1, j = 1 to p+1, p=8 and of matrix B[i,j]:=stirling1(j,i) with i from 1 to d, j from 1 to d, d=9.


EXAMPLE

Matrix begins:
1 0 0 0 0 0 0 0 0
0 1 1 2 6 24 120 720 5040
0 0 1 3 11 50 274 1764 13068
0 0 0 1 6 35 225 1624 13132
0 0 0 0 1 10 85 735 6769
0 0 0 0 0 1 15 175 1960
0 0 0 0 0 0 1 21 322
0 0 0 0 0 0 0 1 28
0 0 0 0 0 0 0 0 1
...
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 3, 2, 0;
1, 6, 11, 6, 0;
1, 10, 35, 50, 24, 0;
1, 15, 85, 225, 274, 120, 0;
1, 21, 175, 735, 1624, 1764, 720, 0;
...


MAPLE

a054654_row := proc(n) local k; seq(coeff(expand((1)^n*pochhammer (x, n)), x, nk), k=0..n) end:


MATHEMATICA

row[n_] := Reverse[ CoefficientList[ (1)^n*Pochhammer[x, n], x] ]; Flatten[ Table[ row[n], {n, 0, 8}]] (* JeanFrançois Alcover, Feb 16 2012, after Maple *)


PROG

(PARI) T(n, k)=polcoeff(n!*binomial(x, n), nk)
(Haskell)
a054654 n k = a054654_tabl !! n !! k
a054654_row n = a054654_tabl !! n
a054654_tabl = map reverse a048994_tabl
 Reinhard Zumkeller, Mar 18 2014


CROSSREFS

Essentially Stirling numbers of first kind, multiplied by factorials  see A008276. Cf. A054655.
Cf. A039810, A039814, A126350, A126351, A126353.
Sequence in context: A139144 A081576 A292717 * A253669 A154477 A322324
Adjacent sequences: A054651 A054652 A054653 * A054655 A054656 A054657


KEYWORD

tabl,sign,easy,nice


AUTHOR

N. J. A. Sloane, Apr 18 2000


EXTENSIONS

Additional comments from Thomas Wieder, Dec 29 2006
Edited by N. J. A. Sloane at the suggestion of Eric Weisstein, Jan 20 2008
Added a comment concerning the sum of the entries on a row which is always 0 for all row >= 3 and the formula T(n,r)=T(n1,r)  (n1)*T(n1,r1) Doudou Kisabaka (dougk7(AT)gmail.com), Dec 18 2009


STATUS

approved



