This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054654 Triangle read by rows: matrix product of the binomial coefficients with the Stirling numbers of the first kind. 11
 1, 1, 0, 1, -1, 0, 1, -3, 2, 0, 1, -6, 11, -6, 0, 1, -10, 35, -50, 24, 0, 1, -15, 85, -225, 274, -120, 0, 1, -21, 175, -735, 1624, -1764, 720, 0, 1, -28, 322, -1960, 6769, -13132, 13068, -5040, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS The sum of the entries on each row of the triangle, starting on the 3rd row, equals 0. E.g. 1+(-3)+2+0 = 0 The entries on the triangle can be computed as follows. T(n,r) = T(n-1,r) - (n-1)*T(n-1,r-1). T(n,r) = 0 when r equals 0 or r > n. T(n,r) = 1 if n==1 Triangle T(n,k) giving coefficients in expansion of n!*C(x,n) in powers of x. E.g. 3!*C(x,3) = x^3-3*x^2+2*x. The matrix product of binomial coefficients with the Stirling numbers of the first kind results in the Stirling numbers of the first kind again, but the triangle is shifted by (1,1). Essentially [1,0,1,0,1,0,1,0,...] DELTA [0,-1,-1,-2,-2,-3,-3,-4,-4,...] where DELTA is the operator defined in A084938 ; mirror image of the Stirling-1 triangle A048994 . - Philippe Deléham, Dec 30 2006 LINKS Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened Eric Weisstein's World of Mathematics, Pochhammer Symbol Eric Weisstein's World of Mathematics, Rising Factorial Eric Weisstein's World of Mathematics, FallingFactorial FORMULA n!*binomial(x, n) = Sum T(n, k)*x^(n-k), k=0..n. (In Maple notation:) Matrix product A*B of matrix A[i,j]:=binomial(j-1,i-1) with i = 1 to p+1, j = 1 to p+1, p=8 and of matrix B[i,j]:=stirling1(j,i) with i from 1 to d, j from 1 to d, d=9. EXAMPLE Matrix begins: 1 0 0 0 0 0 0 0 0 0 1 -1 2 -6 24 -120 720 -5040 0 0 1 -3 11 -50 274 -1764 13068 0 0 0 1 -6 35 -225 1624 -13132 0 0 0 0 1 -10 85 -735 6769 0 0 0 0 0 1 -15 175 -1960 0 0 0 0 0 0 1 -21 322 0 0 0 0 0 0 0 1 -28 0 0 0 0 0 0 0 0 1 ... Triangle begins: 1; 1, 0; 1, -1, 0; 1, -3, 2, 0; 1, -6, 11, -6, 0; 1, -10, 35, -50, 24, 0; 1, -15, 85, -225, 274, -120, 0; 1, -21, 175, -735, 1624, -1764, 720, 0; ... MAPLE a054654_row := proc(n) local k; seq(coeff(expand((-1)^n*pochhammer (-x, n)), x, n-k), k=0..n) end: MATHEMATICA row[n_] := Reverse[ CoefficientList[ (-1)^n*Pochhammer[-x, n], x] ]; Flatten[ Table[ row[n], {n, 0, 8}]] (* Jean-François Alcover, Feb 16 2012, after Maple *) PROG (PARI) T(n, k)=polcoeff(n!*binomial(x, n), n-k) (Haskell) a054654 n k = a054654_tabl !! n !! k a054654_row n = a054654_tabl !! n a054654_tabl = map reverse a048994_tabl -- Reinhard Zumkeller, Mar 18 2014 CROSSREFS Essentially Stirling numbers of first kind, multiplied by factorials - see A008276. Cf. A054655. Cf. A039810, A039814, A126350, A126351, A126353. Sequence in context: A139144 A081576 A292717 * A253669 A154477 A322324 Adjacent sequences:  A054651 A054652 A054653 * A054655 A054656 A054657 KEYWORD tabl,sign,easy,nice AUTHOR N. J. A. Sloane, Apr 18 2000 EXTENSIONS Additional comments from Thomas Wieder, Dec 29 2006 Edited by N. J. A. Sloane at the suggestion of Eric Weisstein, Jan 20 2008 Added a comment concerning the sum of the entries on a row which is always 0 for all row >= 3 and the formula T(n,r)=T(n-1,r) - (n-1)*T(n-1,r-1) Doudou Kisabaka (dougk7(AT)gmail.com), Dec 18 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 00:21 EDT 2019. Contains 328135 sequences. (Running on oeis4.)