login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054654
Triangle of Stirling numbers of 1st kind, S(n, n-k), n >= 0, 0 <= k <= n.
12
1, 1, 0, 1, -1, 0, 1, -3, 2, 0, 1, -6, 11, -6, 0, 1, -10, 35, -50, 24, 0, 1, -15, 85, -225, 274, -120, 0, 1, -21, 175, -735, 1624, -1764, 720, 0, 1, -28, 322, -1960, 6769, -13132, 13068, -5040, 0
OFFSET
0,8
COMMENTS
Triangle is the matrix product of the binomial coefficients with the Stirling numbers of the first kind.
Triangle T(n,k) giving coefficients in expansion of n!*C(x,n) in powers of x. E.g., 3!*C(x,3) = x^3-3*x^2+2*x.
The matrix product of binomial coefficients with the Stirling numbers of the first kind results in the Stirling numbers of the first kind again, but the triangle is shifted by (1,1).
Essentially [1,0,1,0,1,0,1,0,...] DELTA [0,-1,-1,-2,-2,-3,-3,-4,-4,...] where DELTA is the operator defined in A084938; mirror image of the Stirling-1 triangle A048994. - Philippe Deléham, Dec 30 2006
From Doudou Kisabaka, Dec 18 2009: (Start)
The sum of the entries on each row of the triangle, starting on the 3rd row, equals 0. E.g., 1+(-3)+2+0 = 0.
The entries on the triangle can be computed as follows. T(n,r) = T(n-1,r) - (n-1)*T(n-1,r-1). T(n,r) = 0 when r equals 0 or r > n. T(n,r) = 1 if n==1. (End)
REFERENCES
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 18, table 18:6:1 at page 152.
LINKS
Eric Weisstein's World of Mathematics, Pochhammer Symbol.
Eric Weisstein's World of Mathematics, Rising Factorial.
Eric Weisstein's World of Mathematics, FallingFactorial.
FORMULA
n!*binomial(x, n) = Sum_{k=0..n} T(n, k)*x^(n-k).
(In Maple notation:) Matrix product A*B of matrix A[i,j]:=binomial(j-1,i-1) with i = 1 to p+1, j = 1 to p+1, p=8 and of matrix B[i,j]:=stirling1(j,i) with i from 1 to d, j from 1 to d, d=9.
T(n, k) = (-1)^k*Sum_{j=0..k} E2(k, j)*binomial(n+j-1, 2*k), where E2(k, j) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 21 2021
EXAMPLE
Matrix begins:
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, -1, 2, -6, 24, -120, 720, -5040, ...
0, 0, 1, -3, 11, -50, 274, -1764, 13068, ...
0, 0, 0, 1, -6, 35, -225, 1624, -13132, ...
0, 0, 0, 0, 1, -10, 85, -735, 6769, ...
0, 0, 0, 0, 0, 1, -15, 175, -1960, ...
0, 0, 0, 0, 0, 0, 1, -21, 322, ...
0, 0, 0, 0, 0, 0, 0, 1, -28, ...
0, 0, 0, 0, 0, 0, 0, 0, 1, ...
...
Triangle begins:
1;
1, 0;
1, -1, 0;
1, -3, 2, 0;
1, -6, 11, -6, 0;
1, -10, 35, -50, 24, 0;
1, -15, 85, -225, 274, -120, 0;
1, -21, 175, -735, 1624, -1764, 720, 0;
...
MAPLE
a054654_row := proc(n) local k; seq(coeff(expand((-1)^n*pochhammer (-x, n)), x, n-k), k=0..n) end: # Peter Luschny, Nov 28 2010
seq(seq(Stirling1(n, n-k), k=0..n), n=0..8); # Peter Luschny, Feb 21 2021
MATHEMATICA
row[n_] := Reverse[ CoefficientList[ (-1)^n*Pochhammer[-x, n], x] ]; Flatten[ Table[ row[n], {n, 0, 8}]] (* Jean-François Alcover, Feb 16 2012, after Maple *)
Table[StirlingS1[n, n-k], {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Jun 17 2023 *)
PROG
(PARI) T(n, k)=polcoeff(n!*binomial(x, n), n-k)
(Haskell)
a054654 n k = a054654_tabl !! n !! k
a054654_row n = a054654_tabl !! n
a054654_tabl = map reverse a048994_tabl
-- Reinhard Zumkeller, Mar 18 2014
CROSSREFS
Essentially Stirling numbers of first kind, multiplied by factorials - see A008276.
The Stirling2 counterpart is A106800.
Sequence in context: A330785 A292717 A365727 * A355423 A345066 A253669
KEYWORD
tabl,sign,easy,nice,changed
AUTHOR
N. J. A. Sloane, Apr 18 2000
EXTENSIONS
Additional comments from Thomas Wieder, Dec 29 2006
Edited by N. J. A. Sloane at the suggestion of Eric W. Weisstein, Jan 20 2008
STATUS
approved