login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039814 Matrix square of Stirling-1 Triangle A008275. 14
1, -2, 1, 7, -6, 1, -35, 40, -12, 1, 228, -315, 130, -20, 1, -1834, 2908, -1485, 320, -30, 1, 17582, -30989, 18508, -5005, 665, -42, 1, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1, 2487832, -5112570, 3805723, -1389612, 279048 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Exponential Riordan array [1/((1 + x)*(1 + log(1 + x))), log(1 + log(1 + x))]. The row sums of the unsigned array give A007840 (apart from the initial term). - Peter Bala, Jul 22 2014

Also the Bell transform of (-1)^n*A003713(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

LINKS

Vincenzo Librandi, Rows n = 1..60, flattened

FORMULA

E.g.f. k-th column: ((log(1+log(1+x)))^k)/k!.

E.g.f.: 1/(1 + t)*( 1 + log(1 + t) )^(x-1) = 1 + (-2 + x)*t + (7 - 6*x + x^2)*t^2/2! + .... - Peter Bala, Jul 22 2014

EXAMPLE

1; -2,1; 7,-6,1; -35,40,-12,1; ...

MAPLE

# The function BellMatrix is defined in A264428.

# Adds (1, 0, 0, 0, ..) as column 0.

BellMatrix(n -> (-1)^n*add(k!*abs(Stirling1(n+1, k+1)), k=0..n), 10); # Peter Luschny, Jan 28 2016

MATHEMATICA

max = 9; t = Table[StirlingS1[n, k], {n, 1, max}, {k, 1, max}]; t2 = t.t; Table[t2[[n, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Feb 01 2013 *)

CROSSREFS

Cf. A039815-A039817. |a(n, 1)| = A003713(n) (first column). A007840.

Sequence in context: A091700 A157743 A135895 * A178120 A180568 A248950

Adjacent sequences:  A039811 A039812 A039813 * A039815 A039816 A039817

KEYWORD

sign,tabl,nice

AUTHOR

Christian G. Bower, Feb 15 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 25 16:16 EDT 2017. Contains 292499 sequences.