login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054653 Acyclic orientations of the Hamming graph (K_3) x (K_n). 1
1, 6, 204, 19164, 3733056, 1288391040, 712770186240, 589563294888960, 692610802412175360, 1110893919113884631040, 2357555468242103997235200, 6453187419589244410090291200, 22305345996450386267133758668800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This number is equivalent to the number of plans (i.e. structural solutions) of the open shop problem with n jobs and 3 machines - see problems in scheduling theory.

REFERENCES

K.B. Athreya, C.R. Pranesachar, N.M. Singhi, On the number of Latin rectangles and chromatic polynomial of L(K_{r,s}), European J. Combin. 1 (1980) 9-17

M. Harborth, Structural analysis of shop scheduling problems, PhD thesis, Otto-von-Guericke-Univ. Magdeburg, GCA-Verlag, 1999 (in German)

LINKS

Table of n, a(n) for n=0..12.

Structural analysis of shop scheduling problems (PhD thesis in German with English abstract)

FORMULA

(-1)^n*(z!n!/(((z-n)!)^3)*Sum[If[a+b+c*n, (-1)^b*2^c*((z-n+a)!)^2/(a!c!)*Bino mial[3z-3n+3a+b+2, b], 0], {c, 0, n}, {b, 0, n}, {a, 0, n}]) with z=-1

MATHEMATICA

Table[n!*Evaluate[(-1)^n*FunctionExpand[z!n!/(((z-n)!)^3)*Sum[If[a+b+c*n, (-1 )^b*2^c*((z-n+a)!)^2/(a!c!)*Binomial[3z-3n+3a+b+2, b], 0], {c, 0, n}, {b, 0, n}, {a, 0, n}]]/.z->-1]/n!, {n, 0, 15}]

CROSSREFS

Cf. A054652, A053870, A054583.

Sequence in context: A115491 A082405 A183595 * A061540 A173370 A159307

Adjacent sequences:  A054650 A054651 A054652 * A054654 A054655 A054656

KEYWORD

nonn,easy

AUTHOR

M. Harborth (Martin.Harborth(AT)vt.siemens.de)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 05:36 EST 2019. Contains 320245 sequences. (Running on oeis4.)