login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105476 Number of compositions of n when each even part can be of two kinds. 27
1, 1, 3, 6, 15, 33, 78, 177, 411, 942, 2175, 5001, 11526, 26529, 61107, 140694, 324015, 746097, 1718142, 3956433, 9110859, 20980158, 48312735, 111253209, 256191414, 589951041, 1358525283, 3128378406, 7203954255, 16589089473, 38200952238, 87968220657 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row sums of A105475.

Starting (1, 3, 6, 15,...) = sum of (n-1)-th row terms of triangle A140168. - Gary W. Adamson, May 10 2008

a(n) is also the number of compositions of n using 1's and 2's such that each run of like numbers can be grouped arbitrarily. For example, a(4) = 15 because 4 = (1)+(1)+(1)+(1) = (1+1)+(1)+(1) = (1)+(1+1)+(1) = (1)+(1)+(1+1) = (1+1)+(1+1) = (1+1+1)+(1) = (1)+(1+1+1) = (1+1+1+1) = (2)+(1)+(1) = (1)+(2)+(1) = (1)+(1)+(2) = (2)+(1+1) = (1+1)+(2) = (2)+(2) = (2+2). - Martin J. Erickson (erickson(AT)truman.edu), Dec 09 2008

An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 69, 261, 321 and 324, lead to this sequence (without the first leading 1). For the corner squares these vectors lead to the companion sequence A006138. - Johannes W. Meijer, Aug 15 2010

Inverse INVERT transform of the left shifted sequence gives A000034.

Eigensequence of the triangle

1,

2, 1,

1, 2, 1,

2, 1, 2, 1,

1, 2, 1, 2, 1,

2, 1, 2, 1, 2, 1,

1, 2, 1, 2, 1, 2, 1,

2, 1, 2, 1, 2, 1, 2, 1 ... - Paul Barry, Feb 10 2011

Pisano period lengths: 1, 3, 1, 6, 24, 3, 24, 6, 1, 24,120, 6,156, 24, 24, 12, 16, 3, 90, 24,... - R. J. Mathar, Aug 10 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,3).

FORMULA

G.f.: (1-x^2) / (1-x-3*x^2).

a(n) = a(n-1) + 3*a(n-2) for n>=3.

a(n) = 3*A006138(n-2), n>=2.

a(n) = ((2+sqrt(13))*(1+sqrt(13))^n-(2-sqrt(13))*(1-sqrt(13))^n)/(3*2^n*sqrt(13)) for n>0. - Bruno Berselli, May 24 2011

G.f.: 1/(1 - sum(k>=1, x^k*(1+x^k))). - Joerg Arndt, Mar 09 2014

G.f.: 1/(1 - (x/(1-x)) - x^2/(1-x^2)) = 1/(1 - (x+2*x^2+x^3+2*x^4+x^5+2*x^6+...) ); in general 1/(1 - sum(j>=1, m(j)*x^j) ) is the g.f. for compositions with m(k) sorts of part k. - Joerg Arndt, Feb 16 2015

EXAMPLE

a(3)=6 because we have (3),(1,2),(1,2'),(2,1),(2',1) and (1,1,1).

MAPLE

G:=(1-z^2)/(1-z-3*z^2): Gser:=series(G, z=0, 35): 1, seq(coeff(Gser, z^n), n=1..33);

MATHEMATICA

CoefficientList[Series[(x^2 - 1) / (3 x^2 + x - 1), {x, 0, 100}], x] (* or *) Join[{1}, LinearRecurrence[{1, 3}, {1, 3}, 50]] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2011 *)

PROG

(PARI) Vec((1-x^2)/(1-x-3*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 13 2013

(MAGMA) I:=[1, 1, 3]; [n le 3 select I[n] else Self(n-1)+3*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013

CROSSREFS

Cf. A105475, A006130, A105963, A274977.

Sequence in context: A232973 A289006 A152167 * A000599 A063832 A006647

Adjacent sequences:  A105473 A105474 A105475 * A105477 A105478 A105479

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, Apr 09 2005

EXTENSIONS

Typo in Mathematica code fixed by Vincenzo Librandi, Jul 21 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 16:25 EST 2018. Contains 299380 sequences. (Running on oeis4.)