login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105963 Expansion of (1+4*x)/(1-x-3*x^2). 3
1, 5, 8, 23, 47, 116, 257, 605, 1376, 3191, 7319, 16892, 38849, 89525, 206072, 474647, 1092863, 2516804, 5795393, 13345805, 30731984, 70769399, 162965351, 375273548, 864169601, 1989990245, 4582499048, 10552469783, 24299966927 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Inversion of the periodic sequence with initial period (1,4,-1,-4). Sequence appears to have the property: for m > n, if s divides both a(n) and a(m) then s also divides a(2*m-n). E.g., 23 divides both a(3) = 23 and a(25) = 1989990245; 23 also divides a(2*25-3) = a(47) = 185518234185384428 = (2)^2*(23)*(131)*(15393149202239).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,3).

FORMULA

a(n) = A006130(n) + 4*A006130(n-1) = A006130(n+1) + A006130(n-1). - R. J. Mathar, Dec 12 2009

From Colin Barker, May 01 2019: (Start)

a(n) = (2^(-1-n)*((1-sqrt(13))^n*(-9+sqrt(13)) + (1+sqrt(13))^n*(9+sqrt(13)))) / sqrt(13).

a(n) = a(n-1) + 3*a(n-2) for n > 1. (End)

a(n) = 3^((n-1)/2)*( sqrt(3)*Fibonacci(n+1, 1/sqrt(3)) + 4*Fibonacci(n, 1/sqrt(3)) ). - G. C. Greubel, Jan 15 2020

MAPLE

seq(coeff(series((1+4*x)/(1-x-3*x^2), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Jan 15 2020

MATHEMATICA

CoefficientList[Series[(1+4x)/(1-x-3x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 20 2013 *)

Table[Round[3^((n-1)/2)*(Sqrt[3]*Fibonacci[n+1, 1/Sqrt[3]] + 4*Fibonacci[n, 1/Sqrt[3]] )], {n, 0, 40}] (* G. C. Greubel, Jan 15 2020 *)

PROG

Floretion Algebra Multiplication Program, FAMP Code: 1jesforseq[.5'k + .5k' + 2'kk' + 2e]

(PARI) Vec((1+4*x)/(1-x-3*x^2)+O(x^40)) \\ Charles R Greathouse IV, Sep 27 2012

(MAGMA) I:=[ 1, 5]; [n le 2 select I[n] else Self(n-1)+3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jul 20 2013

(Sage)

def A077952_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P( (1+4*x)/(1-x-3*x^2) ).list()

A077952_list(30) # G. C. Greubel, Jan 15 2020

(GAP) a:=[1, 5];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; a; # G. C. Greubel, Jan 15 2020

CROSSREFS

Cf. A006130, A105476, A274977.

Sequence in context: A092733 A116884 A192651 * A270125 A264797 A270905

Adjacent sequences:  A105960 A105961 A105962 * A105964 A105965 A105966

KEYWORD

nonn,easy

AUTHOR

Creighton Dement, Apr 28 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 30 14:20 EDT 2020. Contains 338079 sequences. (Running on oeis4.)