OFFSET
1,2
COMMENTS
Triangle T(n,k), 1 <= k <= n, given by (0, 2, -3/2, -1/6, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. Triangle T(n,k), 0 <= k <= n, is the Riordan array (1, x*(1+x-x^2)/(1-x)). - Philippe Deléham, Jan 25 2012
FORMULA
G.f. = t*z*(1+z-z^2)/(1-z-t*z-t*z^2+t*z^3).
T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-2j-1, k-j-1). - Emeric Deutsch, Aug 06 2006
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) - T(n-3,k-1), n > 1. - Philippe Deléham, Jan 25 2012
EXAMPLE
T(4,2)=6 because we have (1,3),(3,1),(2,2),(2,2'),(2',2) and (2',2').
Triangle begins:
1;
2, 1;
1, 4, 1;
1, 6, 6, 1;
1, 6, 15, 8, 1;
From Philippe Deléham, Jan 25 2012: (Start)
Triangle T(n,k) given by (0, 2, -3/2, -1/6, 2/3, 0, 0, 0, ...) DELTA (1,0,0,0,0,...) begins:
1;
0, 1;
0, 2, 1;
0, 1, 4, 1;
0, 1, 6, 6, 1;
0, 1, 6, 15, 8, 1; ... (End)
MAPLE
G:=t*z*(1+z-z^2)/(1-z-t*z-t*z^2+t*z^3): Gser:=simplify(series(G, z=0, 15)): for n from 1 to 14 do P[n]:=coeff(Gser, z^n) od: for n from 1 to 13 do seq(coeff(P[n], t^k), k=1..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Apr 09 2005
STATUS
approved