login
A105477
Triangle read by rows: T(n,k) is the number of compositions of n into k parts when there are two kinds of part 2.
2
1, 2, 1, 1, 4, 1, 1, 6, 6, 1, 1, 6, 15, 8, 1, 1, 7, 23, 28, 10, 1, 1, 8, 30, 60, 45, 12, 1, 1, 9, 39, 98, 125, 66, 14, 1, 1, 10, 49, 144, 255, 226, 91, 16, 1, 1, 11, 60, 202, 437, 561, 371, 120, 18, 1, 1, 12, 72, 272, 685, 1128, 1092, 568, 153, 20, 1, 1, 13, 85, 355, 1015, 1995, 2555
OFFSET
1,2
COMMENTS
Triangle T(n,k), 1 <= k <= n, given by (0, 2, -3/2, -1/6, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. Triangle T(n,k), 0 <= k <= n, is the Riordan array (1, x*(1+x-x^2)/(1-x)). - Philippe Deléham, Jan 25 2012
FORMULA
G.f. = t*z*(1+z-z^2)/(1-z-t*z-t*z^2+t*z^3).
T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-2j-1, k-j-1). - Emeric Deutsch, Aug 06 2006
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) - T(n-3,k-1), n > 1. - Philippe Deléham, Jan 25 2012
EXAMPLE
T(4,2)=6 because we have (1,3),(3,1),(2,2),(2,2'),(2',2) and (2',2').
Triangle begins:
1;
2, 1;
1, 4, 1;
1, 6, 6, 1;
1, 6, 15, 8, 1;
From Philippe Deléham, Jan 25 2012: (Start)
Triangle T(n,k) given by (0, 2, -3/2, -1/6, 2/3, 0, 0, 0, ...) DELTA (1,0,0,0,0,...) begins:
1;
0, 1;
0, 2, 1;
0, 1, 4, 1;
0, 1, 6, 6, 1;
0, 1, 6, 15, 8, 1; ... (End)
MAPLE
G:=t*z*(1+z-z^2)/(1-z-t*z-t*z^2+t*z^3): Gser:=simplify(series(G, z=0, 15)): for n from 1 to 14 do P[n]:=coeff(Gser, z^n) od: for n from 1 to 13 do seq(coeff(P[n], t^k), k=1..n) od; # yields sequence in triangular form
CROSSREFS
Row sums yield A077998.
Diagonals: A000012, A005843, A000384.
Sequence in context: A122578 A208648 A005131 * A325772 A226174 A208482
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Apr 09 2005
STATUS
approved