login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104004 G.f. (1-x)(1+x)/((2x-1)(x^2+x-1)). 2
1, 3, 7, 16, 35, 75, 158, 329, 679, 1392, 2839, 5767, 11678, 23589, 47555, 95720, 192427, 386451, 775486, 1555153, 3117071, 6245088, 12507887, 25044431, 50135230, 100345485 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A floretion-generated sequence relating to Fibonacci numbers and powers of 2. The sequence results from a particular transform of the sequence A000079*(-1)^n (powers of 2).

LINKS

Table of n, a(n) for n=0..25.

Index entries for linear recurrences with constant coefficients, signature (3,-1,-2).

FORMULA

4*a(n) = A008466(n+3) + A027973(n) (FAMP result); Superseeker results: a(n+2) - a(n+1) - a(n) = A042950(n+1); Coefficients of g.f.*(1-x)/(1+x) matches A099036; Coefficients of g.f./(1+x) matches A027934; Coefficients of g.f./(1-x^2) matches A008466;

a(n) = A101220(3, 2, n+1) - A101220(3, 2, n). - Ross La Haye, Aug 05 2005

3*2^n - Fibonacci(n+3). - Ralf Stephan, May 20 2007

MAPLE

with (combinat):a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=fibonacci(n-1)+2*a[n-1] od: seq(a[n], n=1..26); - Zerinvary Lajos, Mar 17 2008

PROG

Floretion Algebra Multiplication Program, FAMP Code: 1jesforseq[ ( 5'i + .5i' + .5'ii' + .5e)*( + .5j' + .5'kk' + .5'ki' + .5e ) ], 1vesforseq = A000079(n+1)*(-1)^(n+1), ForType: 1A. Identity used: jesfor = jesrightfor + jesleftfor

CROSSREFS

Cf. A000079, A008466, A042950, A099036, A027934.

Sequence in context: A268394 A238913 A133124 * A101509 A240741 A240742

Adjacent sequences:  A104001 A104002 A104003 * A104005 A104006 A104007

KEYWORD

easy,nonn

AUTHOR

Creighton Dement, Feb 24 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 24 03:50 EDT 2017. Contains 283984 sequences.