login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A133124 A007318 * [1, 2, 2, 3, 2, 3, 2, 3, 2,...]. 4
1, 3, 7, 16, 35, 74, 153, 312, 631, 1270, 2549, 5108, 10227, 20466, 40945, 81904, 163823, 327662, 655341, 1310700, 2621419, 5242858, 10485737, 20971496, 41943015, 83886054, 167772133, 335544292, 671088611, 1342177250, 2684354529, 5368709088, 10737418207, 21474836446 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4, -5, 2).

FORMULA

Binomial transform of [1, 2, 2, 3, 2, 3, 2, 3, 2,...].

a(n) = 5*2^(n-1) - (n+1), for n >= 1.

Row sums of triangle A133938. - Gary W. Adamson, Sep 29 2007

G.f.: 1 + x*(3-5*x+3*x^2)/((1-2*x)*(1-x)^2). - R. J. Mathar, Nov 14 2007

E.g.f.: (5*exp(2*x) - 2*(1+x)*exp(x) - 1)/2. - G. C. Greubel, Oct 21 2017

EXAMPLE

a(3) = (1, 3, 3, 1) dot (1, 2, 2, 3) = (1 + 6 + 6 + 3).

a(5) = 74 = 2^6 + 2^4 - 6 = 64 + 16 - 6.

MATHEMATICA

Join[{1}, Table[5*2^(n-1) - n -1, {n, 1, 50)]] (* G. C. Greubel, Oct 21 2017 *)

PROG

(PARI) concat(1, for(n=1, 50, print1(5*2^(n - 1) - n - 1, ", "))) \\ G. C. Greubel, Oct 21 2017

(MAGMA) [1] cat [5*2^(n - 1) - n -1: n in [1..50]]; // G. C. Greubel, Oct 21 2017

CROSSREFS

Cf. A000079, A133938.

Sequence in context: A239257 A268394 A238913 * A104004 A101509 A240741

Adjacent sequences:  A133121 A133122 A133123 * A133125 A133126 A133127

KEYWORD

nonn,changed

AUTHOR

Gary W. Adamson, Sep 19 2007

EXTENSIONS

Terms a(9) onward added by G. C. Greubel, Oct 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 22 09:20 EDT 2017. Contains 293761 sequences.