login
A240742
Number of compositions of n having exactly seven fixed points.
3
1, 1, 3, 7, 16, 35, 76, 162, 334, 706, 1457, 2996, 6130, 12496, 25383, 51423, 103937, 209723, 422418, 849843, 1707917, 3429407, 6881120, 13798903, 27657921, 55414350, 110989891, 222243203, 444916908, 890536103, 1782217460, 3566301121, 7135641348, 14276228900
OFFSET
28,3
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 28..1000
FORMULA
a(n) ~ c * 2^n, where c = 0.00000000620059990498579334409439332104298331660404026106645127910814204326... . - Vaclav Kotesovec, Sep 07 2014
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, series(
add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 8))
end:
a:= n-> coeff(b(n, 1), x, 7):
seq(a(n), n=28..65);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n - j, i + 1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 8}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 7}]; Table[a[n], {n, 28, 65}] (* Jean-François Alcover, Nov 06 2014, after Maple *)
CROSSREFS
Column k=7 of A238349 and of A238350.
Sequence in context: A104004 A101509 A240741 * A240743 A240744 A240745
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Apr 11 2014
STATUS
approved