login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098531
Sum of fifth powers of first n Fibonacci numbers.
10
0, 1, 2, 34, 277, 3402, 36170, 407463, 4491564, 49926988, 553211363, 6137270812, 68054635036, 754774491429, 8370420537086, 92830050637086, 1029498223070793, 11417322172518550, 126619992693837974, 1404237451180502875, 15573231068749231000
OFFSET
0,3
COMMENTS
Prime p divides a((p-1)/2) for p = {29,89,101,181,229,...} = A047650[n]. Primes for which golden mean tau is a quadratic residue or Primes of the form x^2 + 20y^2. - Alexander Adamchuk, Aug 07 2006
LINKS
FORMULA
a(n) = -7/22 + 2*F(n+2)/5 + (F(5*(n+1)) + F(5*n))/(5*55) - (-1)^n*(F(3*(n+1)) - F(3*n))/(2*10), where F=A000045. One may use F(5*(n+1)) + F(5*n) = F(5*n+1) + 4*F(5*n+2) (due to the Binet-de Moivre formula).
G.f.: x*(1-7*x-16*x^2+7*x^3+x^4)/((1-x)*(1+4*x-x^2)*(1-x-x^2)*(1-11*x-x^2)). - Bruno Berselli, Oct 12 2012
MATHEMATICA
Accumulate[Fibonacci[Range[0, 20]]^5] (* Harvey P. Dale, Jan 14 2011 *)
CoefficientList[Series[x*(1-7*x-16*x^2+7*x^3+x^4)/((1-x)*(1+4*x-x^2)*(1-x-x^2)*(1-11*x-x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 13 2012 *)
PROG
(PARI) a(n)=sum(i=0, n, fibonacci(i)^5)
(Magma) [(&+[Fibonacci(k)^5:k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 17 2018
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Sep 12 2004
EXTENSIONS
Formula corrected, with the author's consent, by Wolfdieter Lang, Oct 12 2012
STATUS
approved