The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136362 Numbers n such that P+n is not irreducible, where P = x^8 - 8*x^6 + 20*x^4 - 16*x^2 + 2. 1
 1, 2, 34, 254, 898, 2302, 4898, 9214, 15874, 25598, 39202, 57598, 81794, 112894, 152098, 200702, 260098, 331774, 417314, 518398, 636802, 774398, 933154, 1115134, 1322498 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS P = 2*(substitution of x by x/2 in T_8(x)), where T_8(x) is degree 8 Chebyshev polynomial of the first kind. LINKS Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the First Kind FORMULA a(1) = 1; a(2) = 2; for n > 2, a(n) = 4*n^2*(n-2)^2-2. G.f.: x*(4*x^6 - 21*x^5 + 47*x^4 - 94*x^3 - 34*x^2 + 3*x - 1)/(x - 1)^5. EXAMPLE P+254 = x^8 - 8*x^6 + 20*x^4 - 16*x^2 + 256 = (x^4 - 10*x^2 + 32)*(x^4 + 2*x^2 + 8). PROG (MAGMA) Zx:= PolynomialRing(Integers()); T:=Coefficients(ChebyshevT(8)); P:=Zx ! [ 2^(2-i)*T[i]: i in [1..#T] ]; [ n: n in [0..1340000] | not IsIrreducible(P+n) ]; CROSSREFS Cf. A126270. Sequence in context: A131471 A318268 A036827 * A220507 A263689 A098531 Adjacent sequences:  A136359 A136360 A136361 * A136363 A136364 A136365 KEYWORD nonn AUTHOR Klaus Brockhaus, Dec 27 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 18:56 EDT 2020. Contains 334664 sequences. (Running on oeis4.)